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We develop hierarchical, nonparametric Bayesian models of multiscale

image representations. Individual wavelet coefficients or features are marginally

distributed as Dirichlet process (DP) mixtures, yielding the heavy-tailed marginals

characteristic of natural images. The hidden assignments of features to clus-

ters are then globally linked via a tree-structured graphical model. The result-

ing multiscale stochastic process automatically adapts to the varying com-

plexity of different datasets, and captures global, highly non-Gaussian statis-

tical properties of natural images. This hierarchical Dirichlet process hidden

Markov tree (HDP-HMT) framework extends prior work on hidden Markov

trees, local Gaussian scale mixtures, and HDP hidden Markov models. By

truncating the potentially infinite set of hidden states, we develop Monte

Carlo methods which exploit belief propagation for efficient learning from

large datasets. Our results show that the HDP-HMT captures interesting struc-

ture in natural scenes, and leads to effective algorithms for image catego-

rization and denoising. Moreover, by transferring statistics learned from a

database of natural images, we demonstrate significant improvements in de-

noising highly distorted images over a baseline empirical Bayesian approach,

which uses image statistics learned only from the noisy image.

1. Introduction. The visual information in typical computational vision tasks

exhibits highly structured, but complex variability. In most tasks ranging from low-

to high-level vision, drawing reasonable inferences requires a priori knowledge on

the regularities of the stimuli via statistical modelling, often done in a simplifying

feature-based representation. In this paper we will consider representations which

are multiscale, commonly used in computational vision. Multiresolution represen-

tations have also natural ties to tree-structured graphical models, which benefit

from efficient exact estimation methods [18]. One highly successful model adopt-

ing these ideas is the Hidden Markov Tree (HMT) - model [4]. A HMT consists

of a tree of discrete-valued latent state-assignment variables, which generate pyra-

midally organizable image features. The dependency-structure in the model is ex-

tremely simple: Conditioned on a hidden state assignment variable, the associated

observation is independent from the rest of the the tree. Despite such simplicity in

model structure, it enables modeling of complex marginal distributions, and joint

dependencies: As each value of a hidden state assignment variable describes the
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random choice of emission distribution for the associated observation, observations

are marginally represented as mixture models. Given an appropriate number of

components, this enables effective modeling of the heavy-tailed marginal distribu-

tions observed in natural imagery. The Markov-dependencies between the hidden

states then enable capturing higher-order dependencies between the observations.

Nonetheless, the HMT has a problem of great practical significance: it doesn’t

include a mechanism for the allocation of an appropriate number of components

to the various scales in the model. This problem has been tried to solve previ-

ously by using information criterion-based model selection, but the hierarchical

structure of the model makes the approach computationally very challenging and

problematic for many real-life applications [23]. In this article, we present a non-

parametric Bayesian modeling framework, Hierarchical Dirichlet Process Hidden

Markov Tree (HDP-HMT), which provides an alternative to the model selection,

and extends the HMT in several important ways. Most importantly, the number of

hidden states in the models are unbounded, and are determined in a data-driven

and -adaptive way. It is accomplished by associating each state transition mixture

a Dirichlet Process Mixture, and coupling them in learning with the Hierarchical

Dirichlet Process (HDP)-framework [26].

We propose Monte Carlo learning algorithms to estimate the posterior distribu-

tions of the models’ parameters, which allow learning from large and potentially

noisy image databases, and develop effective algorithms for scene categorization

and image denoising. Scene categorization is directly useful in applications such

as image annotation and retrieval [29]. The global identity and structure of natural

scenes also provides important contextual cues for the detection and recognition

of objects [27, 28]. In addition to being an important application as itself, image

denoising is commonly used in assessing image model performance.

When making predictions about clean image data, most of the denoising meth-

ods rely solely on statistics learned from the noisy image at hand, such as in em-

pirical Bayesian approaches [19], and engineering-based approaches [6]. At high

noise levels there can be very little image information available, and regularities to

learn about clean images to be used for making predictions. Such statistics could be

learned a priori from a database of clean images, and there are some recent meth-

ods adopting these ideas [5, 21], but they cannot learn additional statistics from the

noisy image in a principled fashion. Accomplishing such is straightforward in our

case, as we show in section 5 where we propose a framework for denoising based

on transfer learning, applicable also for other restoration tasks.

We begin in Sec. 2 by reviewing previous models for multiscale representa-

tions of natural images based on Gaussian scale mixtures, and tree–structured la-

tent variable models. The section also describes nonparametric Baysian methods,

and adapts them for unstructured image representations. We then integrate these
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research themes in the HDP-HMT, and develop Monte Carlo methods for learning

from training images in Sec. 3, and evaluate its suitability as a model for natural

images and scenes in scene categorization (Sec. 4), and denoising (Sec. 5). In cate-

gorization, we also demonstrate the importance of capturing dependencies between

image features by comparing HDP-HMT to its “bag-of-feature” version, and that

of the feature representation used. In denoising, we also show the significant bene-

fits of using statistics from both clean images and the noisy image in estimation, by

comparing denoising with the HDP-HMT using an empirical Bayesian and a trans-

fer learning-based algorithm. In both of these image analysis tasks, we compare

the performance of the HDP-HMT against state-of-the-art methods.

2. Multiscale Analysis of Natural Images. Images of natural scenes typi-

cally contain large, homogeneously textured regions, as well as localized intensity

changes caused by occlusion boundaries. Their statistics are thus most simply char-

acterized in representations which are jointly localized in spatial position and fre-

quency [24, 28]. These observations have motivated the use of many wavelet-based

approaches to image modeling. In these methods, images are first decomposed us-

ing a linear basis into a pyramid of wavelet coefficients, whose statistics are then

modeled.

There are numerous efforts to capture the regularities existing in the decom-

posed images, ranging from local to global statistical analysis of the transform co-

efficients [24]. In the following, we describe briefly the multiscale decompositions,

and the models used to describe their statistics, most relevant to our work.

In image restoration tasks, in which images are analyzed and processed in a

transformed space, the underlying decomposition needs to be invertible. This is the

case for our image denoising algorithms developed later. In scene categorization,

there is no such restriction. In the following, in addition to invertible wavelet trans-

forms, we will also discuss non-invertible SIFT-descriptor pyramids, which we

show in section 4 lead into improved scene categorization results over wavelets.

2.1. Wavelet Representations. Wavelet transforms decompose images at multi-

ple scales by recursively filtering with a scaled, band-pass kernel function. This in-

vertible linear transform produces a set of low-pass scaling coefficients, and higher

frequency detail coefficients, organized in a pyramid (see Figure 1). Although the

fixed set of basis functions (consisting of translated, dilated, and rotated versions

of a common kernel) have not been designed a particular class of images in mind,

they are similar to those obtained using sparse coding methods aiming to find a

linear basis optimal (in terms of maximal sparseness and statistical independence

of transform coefficients) for natural images [8, 17]1.

1as well as to the receptive fields of simple cells in primary visual cortex
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(a) Basis functions illustration (b) Natural image responses (high-pass

residual not shown)

FIG 1. Illustration of basis functions for 3rd-order steerable pyramids, and the transform coefficients

of a natural image (peppers). The top-left basis function corresponds to a low-pass filter/scaling

function, whereas the other basis functions illustrated are oriented band-pass filters. Each of the

illustrated basis function images have been obtained by reconstructing a steerable pyramid with a

single non-zero coefficient positioned at the center of the corresponding subband, after which they

have been cropped and resized for visualization purposes.

Despite these similarities between wavelet transforms, there are differences of

significant importance for modeling and analysis purposes. For example, trans-

forms which are not translational invariant may be problematic for many image

analysis tasks: while the critically sampled orthogonal wavelet transforms approx-

imately decorrelate or whiten natural images, and thus lead to effective compres-

sion algorithms, their lack of translational invariance may lead to instability and

highly visible aliasing artifacts (arising from the critical sampling) in the pres-

ence of noise. Steerable pyramids address these issues via an overcomplete basis,

or frame, optimized for increased orientation selectivity [22]. While the statistics

of such non-orthogonal transformations are more complex, they are advantageous

for image analysis [11, 19]. These representations are also used in the wavelet-

based image denoising methods we propose in Section 5, as in several other leading

wavelet-based denoising methods (such as in [15, 19]).

2.2. SIFT-descriptor pyramids. The SIFT-transform [14] is a feature-extraction

method which has been used extensively in recent years in various visual recogni-

tion tasks. It describes image information with histograms of oriented gradients

within a neighborhood, which is split into a grid of analysis-subregions, around of

point of interest. Within each of these subregions, oriented gradients are computed

for each pixel, and a subregion-specific histogram with direction-quantized bins is

built based on them. The full SIFT-descriptor is a 128-dimensional vector, consist-

ing of 8-bin histograms (each representing gradient strength within that orientation

regime), one for each of the 4× 4 subregions.
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FIG 2. Natural scene images and corresponding SIFT-codeword pyramids.
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FIG 3. Empirical histogram (blue solid line) of a natural image subband coefficient values with

maximum likelihood Gaussian fit overlaid (red dashed line).

Previous comparative studies have shown that for scene categorization tasks,

best performance is attained by computing features on a dense, regular grid [1, 7],

rather than at sparse interest points [14, 20]. The intuitive explanation for this phe-

nomenon is that the presence of open, textureless regions is highly indicative of

certain scene categories [16, 28]. In this work, we extract features from overlapping

patches spaced on a grid. To provide further discriminative power, we also rescale

the extraction window and extract dense features at multiple coarser scales. To re-

duce the dimensionality of the extracted features, they are vector-quantized into a

dictionary of visual words. Figure 2 shows example natural scene images (resized

into multiple scales), and corresponding SIFT-codeword pyramids, in which col-

ors encode visual words from a 1000-element dictionary, obtained using K-means

clustering.

2.3. Models for Statistics of Individual Coefficients. Wavelet coefficients typi-

cally have highly kurtotic marginal distributions, with “heavy tails” indicating that

extreme values occur frequently compared to Gaussian distributions. A class of dis-
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tributions that can provide good matches to the heavy-tailed marginals of individual

coefficients xi, are mixture distributions. One widely used continuous mixture is

the Gaussian scale mixture, which models xi as the product of two independent

variables:

(1) xi =
√
viui vi ≥ 0, ui ∼ N (0,Λ)

Marginalizing the scalar multiplier vi mixes Gaussians of varying scales:

(2) p(xi) =

∫

N (xi; 0,Λ) dG(Λ)

A variety of continuous mixing distributions G(Λ) provide good models of wavelet

statistics [30]. In some cases, however, even simple two–component mixtures are

effective:

(3) xi ∼ πN (0,Λ0) + (1− π)N (0,Λ1)

Here, π is the probability that xi is drawn from an “outlier” component with large

variance Λ0, and Λ1 is smaller to capture the many near–zero coefficients. Such

discrete mixtures have important computational advantages, and have been suc-

cessfully used for image denoising [3].

An example of using this density for modeling individual wavelet subband coef-

ficients is shown in Figure 4. Even though the binary mixture provides a closer fit

than a single Gaussian, many more components are needed to build a highly accu-

rate model. However, choosing too many components leads to overfitting, and poor

generalization in testing. Also for different datasets (such as for different images,

or for a larger set of images) different complexities may be appropriate.

A practical solution is to use a Dirichlet process (DP) mixture of Gaussians,

which assumes a discrete mixture of unbounded number of Gaussians, and uses

a regularizing prior on the mixture weights πk. Through this prior, which is part

of the core machinery built in this paper, the appropriate dimensionality is deter-

mined in a data-driven fashion. The marginal distribution for a wavelet coefficient

xi under this model can be written as follows:

(4) p(xi) =

∞
∑

k=1

πkf (xi | θk) =
∞
∑

k=1

πkN (xi; 0,Λk)

The associated mixing distribution is discrete, and is defined as follows:

(5) G(Λ) =

∞
∑

k=1

πkδ(Λ − Λk)
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FIG 4. Empirical histograms (blue solid lines) of a natural image (Barbara) subband coefficient

values with best fitting instances of three different models (red dashed lines) overlaid. Models from

left to right: Gaussian, mixture of two Gaussians, Dirichlet process mixture of Gaussians. Below

each plot is the relative entropy between the empirical histogram (using 500 variable-size bins) and

the fitted model, as a fraction of the histogram entropy.

where πk denotes the mixing proportion for component k, associated with param-

eters Λk. The stick-breaking prior, which regularizes the infinite mixture, denoted

by π ∼ GEM(γ), defines the mixture weights using beta random variables:

πk = π′k

k−1
∏

ℓ=1

(1− π′ℓ) π′ℓ ∼ Beta(1, γ)(6)

The construction of the countably infinite set of mixture weights π can be seen

as breaking proportions of a stick. It is started by breaking a random proportion

given by Beta(1, γ) of a stick of length one. The consecutive breaks are done to

the part of the stick, that’s remaining after previous breaks, each with a random

proportion again sampled from Beta(1, γ). The component parameters are inde-

pendently sampled as Λk ∼ H , where H denotes a prior over component parame-

ters. Throughout this paper, we use conjugate inverse–Wishart H priors for zero–

mean Gaussian component distributions of the continuous wavelet coefficients, and

Dirichlet H for multinomial models of vector quantized SIFT descriptors.

In the generative process under the model, observations are then generated by

first choosing a mixture component zi with probabilities given by the mixture

weights, and then drawing an observation xi from the corresponding emission dis-

tribution f(θzi). For the continuous wavelet coefficients, this distribution f(θzi) =
N (0,Λzi), whereas for discrete SIFT-codewords such as those shown in Figure 5,

f(θzi) = Multinomial (θzi).
When modeling multiscale data, it is often useful to separate data into groups,

and yet allow the groups to be linked - to share statistical strength. One flexible

framework for sharing mixture components, among groups of related data, is the

hierarchical Dirichlet process (HDP) [26]. In this framework, group-specific DP
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FIG 5. Bag-of-Words HDP for a SIFT-descriptor pyramid. Each of the pyramid scales correspond to

different groups (indexed by t ∈ [1, . . . , 4]), and are each modeled using DP-mixtures of multinomi-

als, which share mixture components θk via the HDP-framework.

mixture models are coupled in learning by a global DP mixture with infinite set of

shared mixture components θ, and their global mixing proportions β. For observa-

tions xji within a group j,

(7) p(xji | π, θ1, θ2, . . .) =
∞
∑

k=1

πj(k)f(xji | θk)

The sharing of mixture components is accomplished using the following gener-

ative process: Global mixture weights for an infinite set of shared mixture compo-

nents {θk} are first sampled as in eq. (6). Each of the J groups (see Fig. 5) then

reuses these same components in different proportions πj = (πj1, πj2, . . .):

(8) πj ∼ DP(α, β) β ∼ GEM(γ)

By defining β to be a discrete probability measure (samples from a DP are discrete

with probability one), component sharing is ensured with high probability. Here, β
determines the mean frequency of each component, while α controls the variability

of component weights across groups [26]. Fixing these parameters, observations

are then independently sampled as follows:

(9) zji ∼ πj xji | zji ∼ f
(

θzji
)
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Rather than strictly constraining the number of latent states, the HDP’s stick–

breaking prior places a softer bias towards the simplest models which explain ob-

served data. As we demonstrate in Sec. 4, this leads to rich models whose com-

plexity grows as additional data is observed.

2.4. Hidden Markov Trees for Global Statistics. Although natural images of-

ten lead to uncorrelated wavelet coefficients, they retain important non–Gaussian

dependencies2 . In particular, large magnitude coefficients tend to cluster at nearby

spatial locations, and persist across multiple scales [4, 30]. In overcomplete rep-

resentations such as steerable pyramids, there are also significant dependencies

between orientations. We can see these dependencies over orientation, scale, and

position in the (gray-scale value coded) detail coefficients of the ‘Peppers’-image

shown in Figure 8, and from the ‘bow-tie’-shapes in the conditional histograms

of a wavelet coefficient conditioned on its adjacent wavelet coefficient, shown in

Figure 11 (rows labeled ‘Images’). These properties of wavelet-decomposed im-

ages are utilized in various image models. One of the most effective wavelet-based

image denoising algorithms employs local Gaussian scale mixtures relating each

wavelet coefficient only to its nearest neighbors in location and scale [19]. In this

article, we instead develop a global graphical model of multiscale image decom-

positions.

The scale–recursive operations underlying wavelet decompositions suggest mod-

els defined on Markov trees [31]. For images, these graphical models associate de-

tail coefficient xti with a single coarser scale parent xPa(ti), and four finer scale

children {xtj | tj ∈ Ch(ti)}. Tree–structured Gaussian random fields have been

used to capture correlations among wavelet coefficients [31], and to model the la-

tent multipliers underlying a global Gaussian scale mixture [30]. In the stochastic

process defined by the latter model, wavelet coefficient vectors are marginally dis-

tributed as infinite Gaussian Scale Mixtures. There are then two random processes

determining how these observations evolve in the tree: A premultiplier MAR pro-

cess captures self-reinforcing dependencies while a white noise process controls

correlation structure among wavelet coefficients, which are then generated via a

nonlinearity. Although the underlying representation is parsimonious, it suffers in

expressiveness as the authors fix the order of the multiplier process and consider

only fixed parametric forms of nonlinearity in the multiscale process.

Alternatively, the discrete mixture of eq. (3) has been generalized to define a

binary hidden Markov tree (HMT) [4]. In HMTs, the mixture component zti gen-

erating detail coefficient xti is influenced by the corresponding parent coefficient:

(10) zti | zPa(ti) ∼ πzPa(ti)
xti | zti ∼ N (0,Λzti)

2this is the case also with bases obtained with the sparse coding methods mentioned earlier
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As before, detail coefficient xti may be generated via states zti of low or high

variance. However, by associating each parent state k with a different transition

distribution πk, HMTs also capture dependencies among nearby coefficients. For

example, cascade effects of large magnitude coefficients can be obtained by as-

sociating transitions from high-variance parent state to high-variance child state

likely.

zT1xt0

zt1

xt1

zt2

zt3

zt5

zt4

xt2

xt3

xt5

xt4

Λℓ

πk

Λk

π0

2

FIG 6. An extended binary HMT model for the wavelet coefficients of a two-scale, four-orientation

wavelet transform. The hidden discrete states zti generate vectors of observed features xti spanning

over multiple orientations, and a spatial region (in the above illustration t = 1). The states at

neighboring locations and scales are coupled by state transition distributions π, which in addition

to emission distribution covariances are chosen independently for each scale.

Although the HMT originally defined separate graphical models for each orien-

tation subband, states may alternatively generate vectors of wavelet coefficients [23],

as illustrated in Figures 6 & 7. Each of these wavelet vectors xti span over multiple

(4 in Fig. 6 & 7) orientations, and for example also a spatial region as illustrated in
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Figure 6 - what is only required is that the emissions have equal dimension, and the

hidden states which generate them can be arranged as a tree. For a single decom-

posed image, there is a forest of T trees (or a single tree, if T = 1), equal to the

number of coarsest scale observation vectors3. Dependencies among these multi-

dimensional observations are then better captured by higher–order discrete models.

To do this, one must select an appropriate number of hidden states K , as well as

the pattern used to share states among different coefficient vectors. For example,

the hierarchical image probability (HIP) model [23] shares parameters within each

scale, and optimizes K via a minimum description length (MDL) criterion. This

MDL-based model selection may however lead to combinatorial problems requir-

ing greedy approximations, and the asymptotic justifications of MDL are poorly

suited to small datasets. In the following section, we propose an alternative non-

parametric approach which learns such model structures from training images, in

a data-driven and -adaptive way. Furthermore, this approach enables efficient and

natural mechanisms for reusing statistics learned from clean images in image de-

noising.

π0

Λk

2

πk

Λl

xt0

zt1

xt1

zt5

xt5

zt4

xt4

zt3

xt3

zt2

xt2

T

FIG 7. Alternative representation of the extended binary HMT model for the wavelet coefficients of a

two-scale, four-orientation wavelet transform shown in Figure 6.

3. Hierarchical Dirichlet Process Hidden Markov Trees. Hierarchical Dirich-

let processes have been previously used to define an HDP-HMM which learns the

structure of a countably infinite hidden Markov chain from training data [26]. In

this section, we develop an HDP hidden Markov tree (HDP-HMT) which captures

the global statistics of wavelet decompositions or locally extracted image features.

3For some decompositions, the number of observed scaling coefficients xt0 differs from T , but it

doesn’t affect the modeling as they are not part of the generative process.
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In this section we also develop two Monte Carlo methods for estimating the pos-

terior distributions of HDP-HMT parameters from training images. The collapsed

Gibbs sampler employs Rao–Blackwellization to marginalize the underlying in-

finitely many infinite–dimensional transition distributions πdk , and emission distri-

bution parameters θk; extending the direct assignment sampler by Teh et al.[26].

While the collapsed Gibbs sampler resamples individual assignments of features

to hidden states, the truncated Gibbs sampler, on the other hand, resamples jointly

entire trees of state assignments. This is made possible by considering truncated

representations of the HDP, and results in more efficient blocked sampling algo-

rithms, allowing learning from large datasets [12]. These truncations also provide

a mechanism for balancing computational efficiency and representational accuracy,

while maintaining a nonparametric model.

∞

Λk

πd

k

D

βγ

α

H

xt0

zt1

xt1

zt5

xt5

zt4

xt4

zt3

xt3

zt2

xt2

T

FIG 8. An HDP-HMT for the coefficients of two-scale, four-orientation wavelet transform.

The hidden discrete states zti generate observed detail coefficients xti, emitted by four-

dimensional zero-mean Gaussian distributions, with covariance Λzti . The states at neigh-

boring locations and scales are coupled by child position – dependent transition distribu-

tions πd
k . A global measure β is used to couple these transitions when learning, encourag-

ing reuse of hidden states.

3.1. Statistical Model. Consider a hidden Markov tree, as in Fig. 8, with a

countably infinite state space zti ∈ {1, 2, . . .}. Each value k of the current state

indexes a different transition distribution πdk = (πdk1, π
d
k2, . . .) over child states in

different directions d. We couple these transitions via a shared DP prior:

(11) πdk ∼ DP(α, β) β ∼ GEM(γ)

The simplest approach ties all four children of each parent to follow the same tran-

sition distribution [11]. However, as reported in [12], we have found that allowing
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a distinct transition distribution πdk for each of the four child directions d more

accurately models the asymmetries present in natural images. Given these infinite

transition distributions, visual features are generated via the following coarse–to–

fine recursion:

(12) zti | zPa(ti) ∼ πdtizPa(ti)
xti | zti ∼ F (θzti)

By defining β to be a discrete probability measure, we ensure with high probability

that a common set of child states are reachable from each parent state [26].

Analogously to the standard HDP of Fig. 5, this hierarchical construction en-

courages reuse of states when learning. However, the group associated with each

observation is now dynamically determined by the state of its parent node, rather

than being fixed a priori. This allows the HDP-HMT to learn complex patterns

characteristic of multiscale observation sequences, and avoids the need to specify

a fixed scheme for sharing states among observations. Furthermore, by defining a

prior on infinite models, the HDP-HMT avoids the model selection issues consid-

ered by previous applications of Markov trees [23] and topic–based visual scene

models [1, 7, 20].

Let us know consider a situation, in which observations wti are contaminated

with zero-mean Gaussian noise of known variance Σn, so that wti ∼ N (xti,Σn),
where xti is a latent clean coefficient vector. To properly deal with such scenario,

we augment the basic HDP-HMT with a set of unobserved clean coefficients xti, as

illustrated in Figure 9. As the statistics of noise can now be separated from that of

the signal, estimation of unobserved clean coefficients can now use also statistics

learned from sets of clean images. Figure 10 illustrates a graphical model for a

further HDP-HMT extension which also generates an observed database of clean

images. In the following, learning algorithms are developed for the basic HDP-

HMT shown in Figure 8. See Appendix D for learning algorithms for use with

noise-contaminated observations.

3.2. Learning by Collapsed Gibbs Sampling. To learn the posterior distribu-

tions of the basic HDP-HMT parameters, the proposed Gibbs sampler alternates

between sampling assignments zti to hidden states and global transition probabil-

ities β, as summarized in Algorithm 1. Given fixed values for these variables, the

state–specific transition distributions πk and emission-distribution parameters θk
can be marginalized in closed form. Such Rao-Blackwellization is guaranteed to

reduce the variance of Monte Carlo estimators [25].

In the first first stage of the algorithm, assignments of features to clusters are re-

sampled. In contrast with standard HDP models [26], the HDP-HMT dynamically

regroups observed features as parent states indexing the groups are resampled. In

sampling, we consider candidate states zti corresponding to every state which is
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Given current state of global mixture weights β, and assignments of features to states z:

1. Sample a random permutation of integers indexing images and their nodes ti.

2. Sample state assignments zti, for each node ti.

(a) Remove feature from cached class-specific statistics:

• update hidden state transition counts:

n
d(ti)
\ti (zPa(ti), zti)← nd(ti)(zPa(ti), zti)− 1;

n
d(ti)
\ti (zti, zCh(ti))← n

d(ti)
\ti (zti, zCh(ti))− 1

• update the inverse-Wishart posterior hyperparameters {κzti, νzti ,∆zti}
to account removal of xti

(b) Determine predictive likelihoods for each candidate class:

p(xti | z,x\ti, H) = Student-tν−d+1

(

xti; 0, ν∆
κ+ 1

κ(ν − d+ 1)

)

(c) Sample new class assignment from the following multinomial:

p(zti | z\ti, β,x) ∝ p(zti | z\ti, β)p(xti | z,x\ti, H)

where p(zti | z\ti, β) has different forms depending on the node position:

leaf nodes:




n
d(ti)
\ti (zPa(ti), zti) + αβzti

n
d(ti)
\ti (zPa(ti), ·) + α





other nodes:




n
d(ti)
\ti (zPa(ti), zti) + αβzti

n
d(ti)
\ti (zPa(ti), ·) + α









n
d(ti)
\ti (zti, ztl) + αβztl + δ(zPa(ti), zti)δ(zti, ztl)

n
d(ti)
\ti (zti, ·) + α+ δ(zPa(ti), zti)





∏

tj∈Ch(ti)\tl





n
d(tj)
\ti (zti, ztj) + αβztj

n
d(ti)
\ti (zti, ·) + α





where tl ∈ Ch(ti), and d(tl) = d(ti).

(d) Add feature to cached class-specific statistics:

• update hidden state transition counts:

nd(ti)(zPa(ti), zti)← n
d(ti)
\ti (zPa(ti), zti) + 1;

nd(ti)(zti, zCh(ti))← nd(ti)(zti, zCh(ti)) + 1

• update the inverse-Wishart posterior hyperparameters {κzti, νzti ,∆zti}
to account addition of xti

3. Global mixture weights β can be resampled via an auxiliary variable method [26].

Algorithm 1: Collapsed Gibbs sampling algorithm for an HDP-HMT model with

zero-mean multivariate Normal emission distributions, and inverse-Wishart priors

on their covariance matrices. We illustrate the resampling of assignments zti to

hidden states and global transition probabilities β. A full iteration of the Gibbs

sampler applies the feature assignment updates to all images in random order. For

efficiency, we cache and recursively update the state-specific statistics.
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used at least once elsewhere in the tree, as well as a potential new state. This predic-

tive rule allows HDP-HMTs to determine state space cardinality in a data–driven

fashion. The number of states grows when new clusters are added, and shrinks,

when all observations currently assigned to a cluster are removed.

In the second stage of the algorithm, the global transition probabilities β are

resampled. Given fixed assignments z = {zti} of coefficients to hidden states, β
can be resampled using auxiliary variable methods [26].

We provide high–level derivations for the sampling updates underlying the Al-

gorithm 1 in Appendix A. Although this direct assignment sampler desirably em-

ploys Rao–Blackwellization [25] to avoid explicitly sampling some latent variables,

it can exhibit slow mixing because it only updates one hidden state assignment at a

time. In addition, the recursive updates of sufficient statistics needed to marginal-

ize parameters can be costly when performed after every feature reassignment. To

address these issues, we propose in the following sections an alternative truncated

sampler, which uses finite approximations of the Dirichlet process to allow joint

resampling of entire trees of state assignments.

3.3. Truncated Representations. There are two basic methods for producing

finite approximations to DP models. The first truncates the stick–breaking con-

struction of eq. (6) by setting β′L = 1 for some sufficiently large L. In this article,

we instead use alternative, “weak limit” approximations which sample β from a

K–dimensional finite Dirichlet distribution with symmetric parameters:

(13) β = (β1, . . . , βK) ∼ D(γ/K, . . . , γ/K)

We then take β as the weight vector for a finite, K–component mixture model with

parameters θk ∼ H as before. It can then be shown that the predictions based

on this finite model converge in distribution to those of a corresponding Dirichlet

process DP(γ,H) as K → ∞ [9, 10]. A similar finite approximation exists for

the HDP [26] of Fig. 5, in which β is sampled as in eq. (13) and group–specific

mixture weights are drawn according to

(14) πt = (πt1, . . . , πtK) ∼ D(αβ1, . . . , αβK)

The next subsection extends this approximation to the HDP-HMT to develop a

truncated Gibbs sampling algorithm.

It is important to note that the truncation level K is not taken to be the number

of mixture components observed in the data, but rather a loose upper bound on that

number. Indeed, as we show in Sec. 4, the Dirichlet priors of eqs. (13, 14) cause

the sampler to explain observations via a dynamically chosen subset of the pool

of available mixture states. Theoretical results are available which characterize the

mixture size needed for accurate posterior approximations [10].
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3.4. Blocked Gibbs Sampler for Truncated Representations. Given a trunca-

tion level K , our truncated Gibbs sampler for the basic HDP-HMT, summarized in

Algorithm 2, alternates between blocked resampling of trees of state assignments

zt, global mixture weights β, and state-specific model parameters and transition

distributions {θk, πk}Kk=1.

We begin by conditioning on each state’s transition distribution πk and observa-

tion distribution θk. Given these fixed parameters, the joint distribution of the hid-

den states zt and observations xt can be represented by a forest of tree–structured,

directed graphical models (see Fig. 8). For such models, the belief propagation

(or sum–product) algorithm can be used to efficiently resample all of the latent

assignments in closed form [18, 31].

Messages are first passed from the leaves to the root of each tree to collect

summary statistics, which can also be used to evaluate the marginal likelihood

p
(

xt | {πk, θk}Kk=1

)

in closed form. A top–down recursion is then used to resample

each node zti given its parent zPa(ti). The computational cost of resampling the

assignments for N observed features is thus O(NK2).
In the second stage of the truncated sampler, we condition on the assignments

z of observations to hidden states. It is then straightforward to resample the obser-

vation distributions θk by aggregating statistics of the observations {xti | zti = k}
assigned to each state [25, 26]. To resample state–specific transition distributions

πdk , we first count the number nd(k, ℓ) of transitions from parent state k to child

state ℓ, in direction d, instantiated by z. The posterior is then Dirichlet with com-

bined counts from the hidden state transitions and pseudo transitions from the prior.

In our implementation, parameter sampling is done very efficiently by caching suf-

ficient statistics of the state-specific parameters.

Finally, the global mixture weights β can be resampled via an auxiliary variable

method [26]. The truncation level K can be either chosen larger than the num-

ber of expected states to ensure a good approximation to the underlying HDP, or

set smaller to control computational complexity with large datasets. We provide

high–level derivations for the sampling updates underlying the Algorithm 2 in Ap-

pendix C.

4. Categorization of Natural Scenes. This section develops natural scene

models using the HDP-HMT framework, and evaluates their effectiveness in cap-

turing natural scene statistics, and in categorizing images of new environments.

We begin by describing the proposed scene models, and how they are learned

from training images. To provide understanding of the properties and capabilities

of the models, we then visualize the statistics of scenes they have captured, and

look at their categorization performance. Throughout the experiments, we com-

pare the HDP-HMT against a bag-of-features HDP (HDP-BOW), a non-parametric
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Given current state of global mixture weights β, state-specific model parameters and

transition distributions {θk, πd
k}Kk=1, and assignments of features to states zti for the

currently sampled image:

1. Remove the statistics of previous assignments of features to classes:

• update hidden state transition counts:

n
d(ti)
\ti (zPa(ti), zti)← nd(ti)(zPa(ti), zti)− 1;

n
d(ti)
\ti (zti, zCh(ti))← n

d(ti)
\ti (zti, zCh(ti))− 1

• update the posterior hyperparameters to account removal of xti

2. Sample state assignments zti with belief propagation:

(a) Compute messages upwards from the leaves up to the roots:

for leaf nodes:

mtj
ti (ztj) ∝

∑

zti

πd(ti)
ztj

(zti)p(xti|θzti)

for non-leaf nodes:

mtj
ti (ztj) ∝

∑

zti

πd(ti)
ztj

(zti)p(xti|θzti)
∏

tk∈Ch(ti)

mti
tk(zti)

(b) Sample hidden states while traversing downwards:

for non-leaf nodes:

p(zti | zPa(ti),xt·, π, θ) ∝ πd(ti)
zPa(ti)

(zti)p(xti | θzti)
∏

tj∈Ch(ti)

mti
tj(zti)

for leaf nodes:

p(zti | zPa(ti),xt·, π, θ) ∝ πd(ti)
zPa(ti)

(zti)p(xti | θzti)

3. Add the statistics of new assignments of features xti to classes zti:

• update hidden state transition counts:

nd(ti)(zPa(ti), zti)← n
d(ti)
\ti (zPa(ti), zti) + 1;

nd(ti)(zti, zCh(ti))← nd(ti)(zti, zCh(ti)) + 1

• update the posterior hyperparameters to account addition of xti

4. Sample model parameters {θk, πk}Kk=1:

(a) Sample direction-specific transition distributions by drawing a random

Dirichlet-vector

πd
k ∼ D

(

nd(k, 1) + αβ1, . . . , n
d(k,K) + αβK

)

(b) Sample θk’s by drawing a random vector from

p(θk|x, z, H) ∝ p(θk |H)
∏

j:zj=k

p(xj | θk)

5. Global mixture weights β can be resampled via an auxiliary variable method [26].

Algorithm 2: Blocked Gibbs sampler for learning truncated HDP-HMTs from

training images. We illustrate the blocked resampling of trees of state assignments

zt, global mixture weights β, and state-specific model parameters and transition

distributions {θk, πk}Kk=1. A full iteration of the sampler applies the updates to all

images in random order. For efficiency, we cache the state-specific statistics and

recursively update them when assignment changes.
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Bayesian extension of the model proposed by [7] for scene categorization, which

ignores global structure. This is to demonstrate the importance of capturing spa-

tial feature dependencies in addition to local feature appearance. In the task of

scene categorization (of eight natural scene categories provided by Oliva and Tor-

ralba [16]) we also compare the discriminative power of the multiscale oriented

edge responses of steerable pyramids, and a discrete vocabulary of vector quan-

tized SIFT descriptors.

4.1. Hierarchical Nonparametric Scene Models. The HDP-HMT models for

scenes extend the basic model illustrated in figure 8, so that the states are shared

across a database of natural images of a scene category instead of a single image,

and in the SIFT-domain models latent states generate SIFT-codewords instead of

wavelet coefficient vectors. The observations are separated into T sets, equal to

the number of coarsest-scale observations, each generated by a quadtree of hidden

variables. The hidden variables zt1 generating the observations xt1 are generated

by special root states zt0. We chose the root states heuristically, by assigning them

into 32 different values, in a grid of 8x4 segments (results by completing the forest

into a tree with hidden variables were similar in 8 scenes categorization). As the

coarsest observation scale was of size 16x16, there were 2x4 trees beneath each

root state segment.

The HDP-BOW, used as a baseline model, associates a group to each scale in the

pyramidally organized data, and thus the observed features are drawn from scale-

specific infinite Dirichlet Process mixtures, whose components are shared across

scales via the HDP framework.

We used both wavelet-domain and SIFT-domain features to train the scene mod-

els. The wavelet-domain features were extracted from 128×128 grayscale images,

using 4–scale steerable pyramids, with 6 and 8 orientations (sp5 and spf7, respec-

tively), and the associated low-pass and high-pass residual bands were discarded.

The SIFT descriptors were extracted on a dense grid from 256 × 256 grayscale

images, at four resolutions produced by dyadic rescaling of analysis window size.

We then used K–means clustering to create two 1000–element codebooks from

8 · 5000, and 15 · 5000 randomly chosen features in training images, from 8 and 15

natural scene categories, respectively.

4.2. Visualization of Learned Scene Statistics. In Fig. 11, we illustrate wavelet

coefficient histograms [30] computed from grayscale images in two categories,

“coast” and “tallbuilding.” We compare this raw data to coefficients simulated from

the HDP-HMT, and the bag–of–words (HDP-BOW) models. The simulation for the

models used the states of their respective Markov chains at iteration number 200 in

the truncated Gibbs samplers using 100 training images.

We can see from the figure, that the HDP-HMT models the non–Gaussian “bow
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FIG 11. Pairwise histograms of steerable pyramid detail coefficients computed from two

128× 128 images. Columns 1–4 are computed from a “coast” image, while columns 5–8

are computed from a “tallbuilding” image. Rows 2 & 5 are computed from the observed

images, while rows 3 & 6 and 1 & 4 summarize samples from the bag-of-features HDP-

BOW and the HDP-HMT models, respectively. As in [30], we visualize log-contours of

joint distributions (top) as well as normalized conditional distributions (bottom).

tie” shapes of wavelet histograms, and also accurately capture the complex orienta-

tion and scale relationships exhibited by steerable pyramids. However, it underesti-

mates the strong positive correlations between horizontally and vertically adjacent

coefficients at horizontal and vertical finest scale bands, respectively. This is prob-

ably caused by the Markov tree boundaries which separate some pairs of finer scale

coefficients [31].

In contrast, the HDP-BOW captures only the correlations between neighbor-

ing orientations, which are also well modeled with the HDP-HMT. The relations

among the log-contours of raw and simulated data are also captured with both mod-

els, in the sense that the contours for “tallbuilding” images are more elongated than

those for the “coast” images, which contain less high-frequency content. The verti-

cally layered structure of large-scale environmental scenes [28] can be seen in the

clear dominance of the horizontal band over the vertical band in the “coast” image

histograms, and is captured by both models.

The inability of the HDP-BOW to capture scale and location correlations is also
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evident in the much less coherent maximum a posteriori (MAP) assignments of

features to topics for test images in Fig. 12. The MAP assignments for the HDP-

HMT, which were computed efficiently via the max-product algorithm, reveal that

it more effectively models the dependencies between features, and interestingly

even restores structure in the regions of the “tallbuilding” image corrupted by alias-

ing artifacts.

We also looked at samples from the models given the MAP assignments in the

wavelet-domain. The samples we obtained by combining observed scaling coeffi-

cients with sampled detail coefficients and inverting the transform. These images

shown in Figure 13 further verify the better capability of the HDP-HMT to capture

spatial relationships. In our experiments we also found that the posterior distribu-

tions for the emission parameters were much tighter constrained for the tree model.

To further illustrate the nonparametric properties of the truncated model, we

trained models for two categories with varying numbers of training images. During

sampling, we collected 100 samples of the number of states, after allowing the

Markov chain to burn-in for 100 iterations. Figure 14 shows the posterior mean

of the number of hidden states, as a function of the number of wavelet–domain

training images. As expected, the complexity of this nonparametric model grows as

the number of training images increases, adapting automatically to the complexity

of the data. Visual analysis of the Figure 14 indicates that in this experiment, the

truncation limit did not limit the expressiveness of the models.

4.3. Scene Categorization Results. For our scene categorization experiments,

we trained category-specific hierarchical nonparametric Bayesian models using

200 images for training and the rest were used for testing. For the HDP-HMT, we

classified test images as the category which assigned the highest marginal likeli-

hood to test features. These likelihoods can be efficiently computed in closed form

with a single, coarse-to-fine belief propagation (BP) recursion [4, 31], as derived

in B.1.

The categorization performance results obtained with HDP-HMT and HDP-

BOW on the gray-scale eight category dataset [16] are summarized in Table 1,

where average categorization performances are also shown for the “natural” and

“man-made” subsets of the scene categories [16]. For the confusion matrices, see

Fig. 21 in Appendix E. We can see that using the “stronger” local feature repre-

sentation of the SIFT descriptors leads to significant improvements. Furthermore,

results with the HDP-HMT model are better overall, demonstrating the benefits of

coupling local features with global spatial models. In SIFT-domain, the HDP-HMT

performs also better than the current leading approach [2], with average categoriza-

tion accuracy of 86.5% against 84.7%.
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FIG 12. Maximum a posteriori classification of the joint configuration of hidden states

for a test image. In the wavelet domain, states are sorted based on the determinant of

the covariance matrix of corresponding emission distribution. In the SIFT domain, states

are sorted based on a trimmed posterior mean of corresponding emission distribution (in

dominant orientation sorted space).
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FIG 13. Sampling scenes given maximum a posteriori assignments of the joint configuration

of hidden states for a test image in a wavelet-domain (sp5). The scaling coefficients of the

novel image were set as those of the test image.
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Wavelet (sfp7) SIFT

Man-made [16] 82.9 85.4 86.4 89.7

Natural [16] 78.6 83.5 85.7 87.7

Eight [16] 75.3 80.7 82.4 86.5

Thirteen [7] 75.9 81.8

Fifteen [13] 69.7 77.1

HDP-BOW HDP-HMT HDP-BOW HDP-HMT

TABLE 1

Average scene categorization results, determined as the mean of the diagonal entries of the

corresponding confusion matrix.

We did a similar comparison with the gray-scale thirteen [7] and gray-scale fif-

teen [13] scene category datasets, but only in SIFT-domain, as clearly better per-

formance was obtained in that domain already with the eight categories. Results

from the comparison are summarized in Table 1. For the confusion matrices, see

Figure 22 in Appendix E. As in the previous categorization experiment, the HDP-

HMT obtains better overall performance, although significantly outperforms the

HDP-BOW on the fifteen category dataset. On the thirteen category dataset, the

HDP-HMT outperforms also the dataset authors with average categorization per-

formance of 81.8% against 65.2%, which is also outperformed by the HDP-BOW

(75.9%). However, on the fifteen category dataset, our average categorization rate

of 77.1% is slightly less than that of the leading approach by the dataset authors

81.4%. However, our classifier does not need to keep around any training data in

classification (as opposed to the methods of [1, 13, 16]), and the tree structure al-

lows us to use fast belief propagation methods to efficiently compute likelihoods.
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5. Image Denoising with HDP-HMTs. In this section, we use the HDP-HMT

to restore images corrupted by additive white Gaussian noise, a standard task for

evaluating image model effectiveness. We propose two denoising methods using

the HDP-HMT framework, both applying conventional wavelet-based denoising

methodology by denoising detail coefficients of the wavelet-transformed noisy im-

age. In an empirical Bayesian approach, model parameters are estimated from the

noisy image itself. In a transfer denoising approach, parameter estimation reuses

statistics from a model trained on a database of clean images. We show in our ex-

periments that the transfer denoising approach leads at high noise levels to more

robust predictions than the empirical Bayesian approach, comparable to state-of-

the-art methods.

5.1. Empirical Bayesian Denoising. Our overall learning algorithm for Em-

pirical Bayesian denoising, summarized in Algorithm 4, first estimates parameters

of the HDP-HMT shown in Figure 9 from the observed noisy image. We begin this

learning by running a blocked Gibbs sampler summarized in Algorithm 5 on the

noisy wavelet tree. The sampler extends Algorithm 2 to also resample noisy coeffi-

cients. Derivations for the updates are provided in Appendix C.3. After “burn–in”,

we collect samples θ(s) = {π(s)k ,Λ
(s)
k }Ks

k=1 from the parameters’ posterior distribu-

tion. Note that each sample s instantiates a different number of states Ks.

As shown in Appendix D.1, given θ(s), the conditional mean of wti equals

E
[

xti | w, θ(s)
]

=

Ks
∑

k=1

p(zti = k | w, θ(s))E
[

xti | wti,Λ
(s)
k

]

where the posterior state probabilities p(zti | w, θ) may be efficiently computed

via the belief propagation algorithm [4, 18, 31]. The sample–specific conditional

mean estimate reduces to linear least squares smoothing:

(15) E
[

xti | wti,Λ
(s)
k

]

= Λ
(s)
k (Λ

(s)
k +Σn)

−1wti,

where we have assumed that the emission distributions are zero-mean. See Ap-

pendix D.1 for a general formulation. The denoised image is then determined via an

inverse wavelet transform combining observed scaling coefficients with the poste-

rior mean of each detail coefficient, obtained by averaging over the sample–specific

conditional mean estimates E
[

xti | w, θ(s)
]

.

5.2. Transfer Denoising. Most existing image denoising algorithms estimate

unknown parameters directly from the noisy image at hand. While effective in

some cases, at high noise levels there can be insufficient information, and flexible

models may lead to significantly distorted reconstructions. To avoid this, we pro-

pose a learning algorithm for denoising, summarized in algorithm 3, which uses
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information from the noisy image as well as prior knowledge of multiscale hidden

state patterns learned from a database of clean images, in parameter estimation.

We begin learning by running a blocked Gibbs sampler summarized in Algo-

rithm 2 on a set of clean images in wavelet-domain. After “burn–in”, we collect S
samples from the parameters’ posterior distribution4 .

Then we transfer statistics by running the blocked Gibbs sampler summarized

in Algorithm 5 on the noisy wavelet tree, conditioning on each of the samples

separately. This way estimation uses statistics learned from both clean images,

and the noisy test image at hand. After “burn–in”, we collect a sample θ(s) =

{π(s)k ,Λ
(s)
k }Ks

k=1 from each of the chains, compute the conditional mean estimates

E
[

xti | w, θ(s)
]

, average over them to obtain posterior mean estimates for clean

detail coefficients, and finally apply the inverse wavelet transform combining ob-

served scaling coefficients with the clean detail coefficient estimates.

Given a set of clean images, and a noisy image, corrupted by additive whiteN (0,Σn)
noise:

1. Learn statistics of clean images by running the blocked Gibbs sampler summarized

in Algorithm 2 on clean images in wavelet representations until burn-in.

2. Collect S samples from the converged chain.

3. Apply clean image statistics transfer by running the blocked Gibbs sampler summa-

rized in Algorithm 5 on the noisy graph conditioning separately on the samples, and

collecting a sample θ(s) = {π(s)
k ,Λ

(s)
k }Ks

k=1 from each of the chains after burn-in.

4. Estimate posterior hidden state probabilities p(zti | w, θ) via the belief propagation

algorithm.

5. For each sample, estimate denoised coefficients in closed form:

E
[

xti | w, θ(s)
]

=

Ks
∑

k=1

p(zti = k | w, θ(s))E
[

xti | wti,Λ
(s)
k

]

=

Ks
∑

k=1

p(zti = k | w, θ(s)) Λ(s)
k ( Λ

(s)
k +Σn)

−1wti.

6. Average over samples of varying complexity E
[

xti | w, θ(s)
]

to get posterior mean

of detail coefficients.

7. Apply inverse wavelet transform to a combination of observed scaling coefficients

wt0 with estimated detail coefficients xti.

Algorithm 3: The overall learning algorithm for transfer denoising with HDP-

HMTs. Steps 1–2 are done offline, those computations being shared for all images

to be denoised.

4these procedures are done offline and are shared for all images to be denoised
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FIG 15. Average peak signal-to-noise ratio (PSNR; left) and mean structural similarity

index (MSSIM; right) values as a function of input PSNR, computed over the Empirical

Bayesian denoising results of an ensemble of standard denoising images (cameraman,

einstein, house, mandrill, peppers) using 7th-order steerable pyramids, and undecimated

Haar wavelets.

5.3. Results. Figure 15 shows average denoising performance of the Empir-

ical Bayesian algorithm in terms of peak signal-to-noise ratio (PSNR) and mean

structural similarity index (SSIM). We can see that using 7th–order steerable pyra-

mid decomposition yields better results at lower noise levels, and worse results at

higher noise levels than when using undecimated Haar wavelets. In figure 16 we

compare the HDP-HMT’s denoising performance (using 7th-order steerable pyra-

mids) to two other methods. Using an empirical Bayesian denoising algorithm,

our results at low and moderate noise levels are comparable to BLS-GSM, one

of the most effective wavelet-based denoising methods5. However, at higher noise

levels, increasing high-frequency artifacts start to reduce restoration quality (see

figures 18&16). By learning the statistics of a set of 200 clean natural images

from the Berkeley segmentation dataset, the HDP-HMT learns that images typi-

cally contain many smooth or homogeneously textured regions, separated by sharp

edges. The denoising algorithm transfers this prior knowledge by reusing multi-

scale hidden state patterns, resulting in better reconstruction of distorted textures

at higher noise levels, especially with respect to the perceptual MSSIM criterion,

as also can be seen from the tables 2&3. As we can see from figure 20, statistics

transfer is effective almost immediately, denoising performance converging using

a single sample after a short number of iterations - regardless of the noise level. In

the empirical Bayesian approach, convergence takes increasingly more iterations,

and denoising performance relative to transfer denoising approach using samples

from converged chain decreases, as the noise level increases. In these higher noise

regimes, transfer denoising with the HDP-HMT also surpasses the performance

5PSNR-wise leading wavelet-based denoising method [15] is not used in our comparisons as

sufficient performance information or software is not publicly available
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FIG 16. Average peak signal-to-noise ratio (PSNR; left) and mean structural similarity

index (MSSIM; right) values as a function of input PSNR, computed over the denoising

results of an ensemble of standard denoising images (cameraman, einstein, house, man-

drill, peppers). The wavelet-based methods (HDP-HMT, BLS-GSM) use 7th-order steer-

able pyramids, whereas BM3D analyzes images in blocks.

binary HMT BLS-GSM HDP-HMT (Emp. Bayes)

29.35 dB, 0.814 31.84 dB, 0.899 32.00 dB, 0.904

FIG 17. Comparison of denoising results of the Barbara image with noise level σ = 15. Zoomed up

regions are shown to reveal the artifacts.
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FIG 18. Denoising Lena, Boat, Einstein and Hill images contaminated by additive white Gaussian

noise of standard deviation σ; with HDP-HMT, BLS-GSM [19], and BM3D [6]. The left-most and

right-most performance numbers beneath the images correspond to PSNR and MSSIM values, re-

spectively.
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of the BLS-GSM. At extreme noise levels, the results are comparable to or better

than those of BM3D, a state-of-the-art algorithm which averages similar blocks of

pixels.

To further investigate the performance of the methods, we considered the task

of natural scene denoising, from coast- and tall building-categories, and from the

BSDB-dataset. The dataset-specific HDP-HMT models were trained on 200 im-

ages. For testing, we chose randomly6 10 images not used in training from each of

the categories.

Figure 19 shows average denoising results relative to the results obtained with

an HDP-HMT model pre-trained on (200) images from the same category as the

test image. The figure contains also HDP-HMT results pre-trained on (200) images

from other datasets than the test image as well as results of the empirical Bayesian

approach and of BLS-GSM, and BM3D. When comparing the different HDP-HMT

results, best results are obtained when the training and test data come from the same

category. Interestingly the model trained on images from the Berkeley segmenta-

tion dataset (BSDB) performs better than scene-specific models tested on images

from other scene categories than they are trained on. The result seems intuitive,

since the BSDB-dataset is not specialized to any particular scene, and contains im-

ages with highly diverse structures, including structures similar to those exhibited

in the scene-specific datasets.

When comparing HDP-HMT to the state-of-the-art methods, we can see that

BLS-GSM obtains worst average results on this test. BM3D obtains best results

on average on tall building-category and BSDB-dataset, while HDP-HMT clearly

outperforms the other methods on the coast-category.

6. Conclusion. We have developed a nonparametric, data–driven model for

image features which captures spatial dependencies via a multiscale graphical model.

Our results show that this HDP-HMT captures natural scene statistics more accu-

rately than bag–of–feature models, and leads to improved categorization perfor-

mance.

We have also shown that the HDP-HMT is able to learn complex statistics

of wavelets, and demonstrated its effectiveness in an image denoising task. By

learning the statistics from natural images, the HDP-HMT is able to transfer prior

knowledge of clean multiscale hidden state patterns, resulting in better reconstruc-

tion of distorted textures at higher noise levels in denoising than an Empirical

Bayesian approach. We expect that transfer of natural image statistics will prove

useful for correcting other forms of image distortion, such as significant motion

blur.

6images of poor quality or of too similar content with previously chosen ones were not considered
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FIG 19. Average peak signal-to-noise ratio (PSNR; top) and mean structural similarity

index (MSSIM; bottom) values as a function of input PSNR, computed over the denoising

results of an ensemble of images from a scene-specific dataset (from left to right coast, tall

building, BSDB).
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FIG 20. Denoising performance based on using a single sample for estimation, as a function of the

iteration number of the sample in the sampling algorithm. Empirical Bayesian denoising results are

drawn with dashed lines, transfer denoising results with solid lines. Different colors correspond to

different noise levels.
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APPENDIX A: COLLAPSED GIBBS SAMPLING

A.1. Sampling assignments of data points to clusters zti. From Fig. 8, the

posterior distribution of zti given all other state assignments z\ti factors as

(16) p(zti | z\ti, β,x) ∝ p(zti | z\ti, β) p(xti | x\ti, z)

The second term is the predictive likelihood of xti, which for inverse–Wishart pri-

ors is multivariate Student–t [25]. The form of the first term depends on the position

i of the sampled coefficient, the states of its neighbors, and tying options.

Let n
d(ti)
\ti (k, ℓ) denote the number of transitions from parent state k to child

state ℓ with direction d(ti) instantiated by z\ti, and n
d(ti)
\ti (k, ·) the total number of

outgoing transitions from state k to direction d(ti). For finest scale coefficients,

p
(

zti | zPa(ti) = k, z\ti, β
)

=

∫

πk(zti)p(πk | z\ti, β) dπ
d(ti)
k

=

(

n
d(ti)
\ti (k, zti) + αβ(zti)

n
d(ti)
\ti (k, ·) + α

)(17)

The form of this ratio follows from the properties of Dirichlet distributions.

When evaluating eq. (17), we consider candidate states zti corresponding to

every state which is used at least once elsewhere in the wavelet tree, as well as
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a potential new state. This predictive rule allows HDP-HMTs to determine state

space cardinality in a data–driven fashion.

For non–leaf nodes, p(zti | z\ti, β) is also influenced by its childrens’ states

zCh(ti) , {ztj | tj ∈ Ch(ti)}, and tying options. In the following the analytical re-

sults derived are for the model assuming separate transition probabilities for each

parent-child-direction, which we found performing best in our experiments.

In candidate states where zti 6= zPa(ti),

(18) p(zti | z\ti, β) =

∫

πd
(ti)

zPa(ti)
(zti)p(π

d(ti)

zPa(ti)
|z\ti, α, β) dπd

(ti)

zPa(ti)

·





∏

tj∈Ch(ti)

∫

πd
(tj)

zti
(ztj)p(π

d(tj)

zti
|z\ti, α) dπd

(tj)

zti





=





n
d(ti)
\ti (zPa(ti), zti) + αβzti

n
d(ti)
\ti (zPa(ti), ·) + α









∏

tj∈Ch(ti)





n
d(ti)
\ti (zti, ztj) + αβztj

n
d(ti)
\ti (zti, ·) + α









The case, when a candidate state equals that of the parent is slightly more com-

plicated. Let ztl denote the child of node zti, along the same transition direction

as that from the parent (so that d(tl) = d(ti)). Then for candidate states where

zti = zPa(ti) = k,

(19) p(zti | z\ti, β) =

∫

πd(ti)zPa(ti)
(zti)π

d(tl)
zti

(ztl)p(π
d(ti)
zPa(ti)

|z\ti, α, β) dπd(ti)zPa(ti)

·





∏

tj∈Ch(ti)6=tl

∫

πd(tj)zti
(ztj)p(π

d(tj)
zti
|z\ti, α) dπd(tj)zti



 =

∫

π
d(ti)
k (k)π

d(ti)
k (ztl)p(π

d(ti)
k |z\ti, α, β) dπd(ti)k





∏

tj∈Ch(ti)6=tl





n
d(tj)
\ti (zti, ztj) + αβztj

n
d(tj)
\ti (zti, ·) + α









Let us now compute the term involving the integral in the above product.

(20)

p(zti | z\ti, β) =





n
d(tl)
\ti (k, k) + αβk

n
d(tl)
\ti (k, ·) + α









n
d(tl)
\ti (k, ztl) + δ(k, ztl) + αβztl

n
d(tl)
\ti (k, ·) + 1 + α





·





∏

tj∈Ch(ti)6=tl





n
d(tj)
\ti (zti, ztj) + αβztj

n
d(tj)
\ti (zti, ·) + α








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Combining the results for non-leaf nodes,

(21) p(zti | z\ti, β) =





n
d(ti)
\ti

(zPa(ti), zti) + αβzti

n
d(ti)
\ti (zPa(ti), ·) + α





·





n
d(ti)
\ti (zti, ztl) + αβztl + δ(zPa(ti), zti)δ(zti, ztl)

n
d(ti)
\ti (zti, ·) + α+ δ(zPa(ti), zti)





∏

tj∈Ch(ti)\tl





n
d(tj)
\ti (zti, ztj) + αβztj

n
d(ti)
\ti (zti, ·) + α





where tl ∈ Ch(ti), and d(tl) = d(ti).

A.2. Sampling global transition counts β. Sampling β can be done with

the auxiliary variable technique by [26]. Let mjk denote the number of tables as-

signed to mixture component k in group/mixture j in the chinese restaurant fran-

chise. Given nd(j, k) transitions from state j to state k in direction d observed from

DP(α, β),

(22) p(md
jk = m |β, α, z) = Γ(αβk)

Γ(αβk + nd(j, k))
s(nd(j, k),m)(αβk)

m

where s(n,m) are stirling numbers of first kind. If these numbers get large, sam-

pling from the conditional can become computationally very expensive. However,

one can also sample the number of tables by simulating the Chinese Restaurant

Process (CRP) [26], counting the number of tables occupied after seating nd(j, k)
customers. We found this approach much more efficient in our experiments with

large datasets.

Then given m, β can be sampled from

(23) {β1, . . . , βK , βu} |m,γ ∼ D (m·
·1, . . . ,m

·
·K , γ)

where m·
·k denotes the total number of tables assigned in the mixtures to mixture

component k.

APPENDIX B: EXACT ESTIMATION USING BELIEF PROPAGATION

In this section, we will derive algorithms for exact estimation based on belief

propagation, used in various learning algorithms developed in the manuscript. We

start by the problem of computing the likelihood of a data case, used in the cate-

gorization of natural scenes. The subsection will be described in larger detail than

the later subsections, as the problem solving mechanisms, and the computations

underlying the problems are shared in great detail.
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B.1. Computing likelihood of a data case.

p(x |π, θ) =
∑

z

p(z,x |π, θ) =
∑

z

p(z |π)p(x | z, θ)

=
∑

z

L
∏

ℓ=1

∏

i∈Vℓ

p(zi | zPa(i), π)p(xi | θzi) =
∑

z

L
∏

ℓ=1

∏

i∈Vℓ

πd(i)zPa(i)
(zi) p(xi | θzi),(24)

where ℓ indexes the depth within the tree of L scales, and nodes at depth ℓ have an

index set Vℓ. The belief propagation algorithm solves the summation/elimination

problem efficiently using a scale-recursive procedure. Starting by pushing the sums

over the bottom scale hidden state-assignment variables as far as possible, we can

write that

p(x |π, θ) =
∑

zV\L

L−1
∏

ℓ=1

∏

i∈Vℓ

πd(i)zPa(i)
(zi) p(xi | θzi)(25)

·
∑

zVL

∏

j∈VL

πd(j)zPa(j)
(zj) p(xj | θzj )(26)

=
∑

zV\L

L−1
∏

ℓ=1

∏

i∈Vℓ

πd(i)zPa(i)
(zi) p(xi | θzi)(27)

·
∏

j∈VL

∑

zj

πd(j)zPa(j)
(zj) p(xj | θzj ).(28)

Proceeding on the elimination, we now push the sums over the hidden state-assignment

nodes of the second-deepest level of the tree as far as possible, and have that

(29) p(x |π, θ) =
∑

zV\L−1,L

L−2
∏

ℓ=1

∏

i∈Vℓ

πd(i)zPa(i)
(zi) p(xi | θzi)·

∏

j∈VL−1

∑

zj

πd(j)zPa(j)
(zj) p(xj | θzj)

∏

k∈VL

∑

zk

πd(k)zPa(k)
(zk) p(xk | θzk).

This elimination structure persists over the different scales, and we can solve the

elimination efficiently by a message passing recursion:

(30) ω
Pa(j)
j

(

zPa(j)
)

=
∑

zj

πd(j)zPa(j)
(zj) p(xj | θzj)

∏

k∈Ch(j)

ωj
k(zj) ,

initialized by the computation of (un-normalized) messages from the bottom scale

nodes to their parents ω
Pa(k)
k

(

zPa(k)
)

=
∑

zk
π
d(k)
zPa(k)

(zk) p(xk | θzk), where k ∈
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VL, and terminated at the first scale nodes j ∈ V1 (in which case k ∈ V2). Note

that for each node index j we have that

(31) ω
Pa(j)
j

(

zPa(j)
)

= p(xRj
| zPa(j), π, θ),

where xRj
denotes the observations of the subtree rooted from node j. Likelihood

of the data can be then written as follows:

p(x |π, θ) =
∏

j∈V1

∑

zj

πd(j)zPa(j)
(zj) p(xj | θzj)

∏

k∈Ch(j)

ωj
k(zj)

=
∏

j∈V1

ω
Pa(j)
j

(

zPa(j)
)

,(32)

where zPa(j) is a fixed distinguished state for the first scale nodes.

To avoid numerical issues, we use an alternative recursive scheme for exact like-

lihood computation based on normalized messages. The messages for bottom scale

nodes (k ∈ VL) are the following:

(33) m
Pa(k)
k

(

zPa(k)
)

=
1

ck

∑

zk

πd(k)zPa(k)
(zk) p(xk | θzk),

where the normalization constant

ck =
∑

zPa(k)

∑

zk

πd(k)zPa(k)
(zk) p(xk | θzk) =

∑

zPa(j)

ω
Pa(j)
j

(

zPa(j)
)

.

For intermediate nodes (j ∈ V\1,L)

m
Pa(j)
j

(

zPa(j)
)

=
1

cj

∑

zj

πd(j)zPa(j)
(zj) p(xj | θzj)

∏

k∈Ch(j)

mj
k(zj)

cj =
∑

zPa(j)

∑

zj

πd(j)zPa(j)
(zj) p(xj | θzj)

∏

k∈Ch(j)

mj
k(zj) .(34)

For first scale nodes (j ∈ V1)

m
Pa(j)
j

(

zPa(j)
)

=
∑

zj

πd(j)zPa(j)
(zj) p(xj | θzj )

∏

k∈Ch(j)

mj
k(zj)

= cj .(35)
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After the upwards-recursive sweep, exact likelihood can be then computed as:

p(x |π, θ) =
∏

j∈V1

∑

zj

πd(j)zPa(j)
(zj) p(xj | θzj)

∏

k∈Ch(j)

ωj
k(zj)

=





∏

h∈V\1

ch





∏

j∈V1

∑

zj

πd(j)zPa(j)
(zj) p(xj | θzj)

∏

k∈Ch(j)

mj
k(zj)(36)

=





∏

h∈V\1

ch





∏

j∈V1

cj =
∏

i∈V

ci,(37)

where the pre-multiplying normalization constants in the latter two equalities are

inverting the effect in terms of the final result of using normalized messages as

opposed to un-normalized ones in the message-passing recursion, to get the exact

result.

B.2. Computing hidden state marginal probabilities. For first scale nodes

(i ∈ V1):

p(zi | zPa(i),x, π, θ) =
∑

zCh(i)

p(zi, zCh(i) | , zPa(i),x, π, θ)

= p(zi | zPa(i),x,π, θ)
∑

zCh(i)

∏

j∈Ch(i)

p(zj | zi,x,π, θ)

=
p(xi | θzi)π

d(i)
zPa(i)

(zi)

p(x | zPa(i), π, θ)
∏

j∈Ch(i)

∑

zj

p(zj ,xRj
| zi, π, θ)

p(xRj
| zi, π, θ)

∝ p(xi | θzi)πd(i)zPa(i)
(zi)

∏

j∈Ch(i)

mi
j(zi) ,(38)
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where zPa(i) is a fixed distinguished parent state. For nodes beneath the first scale

(i ∈ V\1):

p(zi |x, π, θ) =
∑

zPa(i),zCh(i)

p(zPa(i), zi, zCh(i) |x, π, θ)

=
∑

zPa(i)

p(zPa(i) |x,π, θ)p(zi | zPa(i),x,π, θ)
∑

zCh(i)

∏

j∈Ch(i)

p(zj | zi,x,π, θ)

=
∑

zPa(i)

p(zPa(i) |x,π, θ)p(zi | zPa(i),x,π, θ)
∏

j∈Ch(i)

∑

zj

p(zj | zi,x,π, θ)

=
∑

zPa(i)

p(zPa(i) |x,π, θ)
p(x | zi, zPa(i), π, θ)πd(i)zPa(i)

(zi)

p(x | zPa(i), π, θ)

·
∏

j∈Ch(i)

∑

zj

p(zj | zi,x, π, θ)

∝
∑

zPa(i)

p(zPa(i) |x, π, θ)
p(xi | zi, θ)πd(i)zPa(i)

(zi)

m
Pa(i)
i

(

zPa(i)
)

∏

j∈Ch(i)

mi
j(zi)

= p(xi | θzi)
∏

j∈Ch(i)

mi
j(zi)

∑

zPa(i)

πd(i)zPa(i)
(zi)

p(zPa(i) |x, π, θ)
m

Pa(i)
i

(

zPa(i)
)

.(39)

Therefore after we have computed the upwards message-passing sweep yielding

the BP-messages for a node from its children as described in the previous sub-

section, we can recursively sweep downwards computing the conditional marginal

probabilities of the hidden state-assignment variables. This second step is started

at the first scale hidden state-assignment nodes, with the computation of (38) for

each node, followed by a downwards-recursive sweep with the computation of (39)

at the deeper scale nodes.

B.3. Computing the joint hidden state conditional probability. Using the

product rule, and conditional independence properties of the tree-structured graph,

we can write that

(40) p(z |x, π, θ) =
∏

i

p(zi | zPa(i),x, π, θ).

These conditional distributions can be computed efficiently utilizing the upwards

BP-messages. Indeed, for nodes on scales from 1 to L− 1, indexed as i ∈ V\L, we

have by marginalizing over the child hidden state-assignment variables that

(41) p(zi | zPa(i),x, π, θ) ∝ p(xi | θzi)πd(i)zPa(i)
(zi)

∏

j∈Ch(i)

mi
j(zi) .
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For bottom scale nodes, indexed as i ∈ VL, we have that

(42) p(zi | zPa(i),x, π, θ) ∝ p(xi | θzi)πd(i)zPa(i)
(zi) .

APPENDIX C: BLOCKED GIBBS SAMPLING FOR TRUNCATED

REPRESENTATIONS

C.1. Sampling Assignments via Belief Propagation. Messages are first passed

from the leaves to the root of each tree to collect summary statistics, which can also

be used to evaluate the marginal likelihood p
(

xt | {πk, θk}Kk=1

)

in closed form.

The bottom–up message passing can be written as

(43) mtj
ti (ztj) ∝

∑

zti

ψtj
ti (zti, ztj)ψti(zti, x)

∏

tk∈N(ti)\tj

mti
tk(zti)

where N(ij) denotes the neighbors of node ij, ψij(zij , x) is the joint belief of

the hidden variable and the observations, and mtj
t (ztj) is the message from hidden

variable ti to tj. For bottom scale nodes the messages can be written as

(44) mtj
ti (ztj) ∝

∑

zti

πd(ti)ztj
(zti)p(xti|θzti)

For other nodes the messages are of form

(45) mtj
ti (ztj) ∝

∑

zti

πd(ti)ztj
(zti)p(xti|θzti)

∏

tk∈Ch(ti)

mti
tk(zti)

A top–down recursion is then used to resample each node zti given its parent

zPa(ti). Using the product rule and conditional independency rules for directed

graphs, we can write the joint conditional probability of hidden states as

(46) p(z |x,π, θ) =
T
∏

t=1

N(t)
∏

i=1

p(zti | zPa(ti),xt·, π, θ).

For bottom scale nodes zti,

(47) p(zti | zPa(ti),xt·, π, θ) ∝ πd(ti)zPa(ti)
(zti)p(xti | θzti),

and for other nodes,

p(zti | zPa(ti),xt·, π, θ) =
∑

zCh(ti)

p(zti, zCh(ti) | zPa(ti),xt·, π, θ)

= p(zti | zPa(ti),xt·, π, θ)
∏

tj∈Ch(ti)

∑

ztj

p(ztj | zti,xt·, π, θ)(48)

∝ πd(ti)zPa(ti)
(zti)p(xti | θzti)

∏

tj∈Ch(ti)

mti
tj(zti) ,(49)
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where mti
tj(zti) is a belief propagation (BP) message from node tj to node ti. The

computational cost of resampling the assignments for N observed features is thus

O(NK2).

C.2. Sampling Model Parameters. In the second stage of the truncated sam-

pler, we condition on the assignments z of observations to hidden states. It is then

straightforward to resample the observation distributions θk by aggregating statis-

tics of the observations {xti | zti = k} assigned to each state [25, 26]. To resam-

ple state–specific transition distributions πdk, we first count the number nd(k, ℓ) of

transitions from parent state k to child state ℓ, in direction d, instantiated by z. The

posterior is then Dirichlet:

(50) πdk ∼ D
(

nd(k, 1) + αβ1, . . . , n
d(k,K) + αβK

)

Finally, the global mixture weights β can be resampled via an auxiliary variable

method [26]. We first sample the number of tables assigned to components in the

mixtures md
jk as in the collapsed Gibbs sampler (see appendix A). Then given m,

β can be sampled from

(51) {β1, . . . , βK} |m,γ) ∼ D (m·
·1 + γ/K, . . . ,m·

·K + γ/K)

C.3. Noisy Data. In the first main step of the blocked Gibbs sampler for noisy

graphs such as in figure 9 summarized in Algorithm 5, we fix the emission distri-

bution parameters Λ, transition probabilities π and global transitions β, and sample

hidden state assignments z and clean wavelet coefficients x from their joint distri-

bution

(52) p(x, z |w) = p(z |w)
∏

ti

p(xti | zti, wti)

To do this, we start by computing the joint assignments of hidden states p(z |w)
with belief propagation. Local evidence for each node p(wti | zti) can be obtained

by marginalizing xti:

(53) p(w | z) =
∏

ti

p(wti | zti) =
∏

ti

∫

Xti

p(wti |xti)p(xti | zti) dxti

where p(wti |xti) = N (wti;xti,Σn) and p(xti | zti) = N (xti; 0,Λzti). From the

properties of Normal distributions it results that p(wti | zti) ∼ N (0,Λzti +Σn).
Then given sampled hidden state assignments zti, clean coefficients xti can be

sampled from

p(xti | zti, wti) ∝ p(xti | zti)p(wti |xti)
= N

(

xti;
(

Λ−1
zti

+Σ−1
n

)−1
Σ−1
n wti,

(

Λ−1
zti

+Σ−1
n

)−1
)(54)
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In the second main step of the algorithm, we fix the hidden state assignments zti
and clean coefficients xti, and sample the parameters. This step is identical to that

described in the subsection above.

APPENDIX D: LEARNING ALGORITHMS FOR IMAGE DENOISING

D.1. Closed-form image denoising. In the developed denoising algorithms,

the denoised image is determined as an inverse wavelet transform (T−1) of ob-

served wavelet coefficients, with detail coefficients replaced by posterior mean es-

timates of their respective noise-free coefficients, obtained by (Monte Carlo) aver-

aging over sample–specific conditional mean estimates E
[

xi | w\0, θ
(s)
]

. Using S
samples, we have that

(55) y = T −1
(

[w0 ; E
[

xi | w\0

]I

i∈1
]
)

,

where E
[

xi | w
]

= 1
S

∑S
1 E
[

xi | w, θ(s)
]

. The sample-specific conditional means

can be written as follows:

E
[

xi | w, θ(s)
]

=

∫

Xi

xip(xi |w, θ(s)) dxi(56)

=

∫

Xi

xi
∑

zi

p(zi, xi |w, θ(s)) dxi(57)

=

∫

Xi

xi
∑

zi

p(zi |w, θ(s))p(xi | zi,w, θ(s)) dxi(58)

=

∫

Xi

xi
∑

zi

p(zi |w, θ(s))p(xi | zi, wi, θ
(s)) dxi(59)

=
∑

zi

p(zi |w, θ(s))
∫

Xi

xip(xi | zi, wi, θ
(s)) dxi(60)

=
K(s)
∑

k=1

p(zi = k |w, θ(s))E
[

xi | wi, θ
(s), zi = k

]

.(61)

Using the normal equations, we obtain that

E
[

xi | wi, θ
(s), zi = k

]

= E
[

xi | θ(s), zi = k
]

+(62)

Cov[xi | θ(s), zi = k]
(

Cov[wi | θ(s), zi = k]
)−1 (

wi − E
[

wi | θ(s), zi = k
]

)

.

Since wi = xi + ni, where ni ∼ N (0,Σn), we have that E
[

wi | θ(s), zi = k
]

=

E
[

xi | θ(s), zi = k
]

= µ
(s)
k , and Cov[wi | θ(s), zi = k] = Cov[xi | θ(s), zi = k] +
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Σn = Λ
(s)
k +Σn. Plugging these into (62), we obtain

(63) E
[

xi | wi, θ
(s), zi = k

]

= µ
(s)
k + Λ

(s)
k

(

Λ
(s)
k +Σn

)−1 (

wi − µ(s)k

)

.

Combining the results, we can write the state-specific conditional mean estimates

as follows:

(64)

E
[

xi | w, θ(s)
]

=

K(s)
∑

k=1

p(zi = k |w, θ(s))
[

µ
(s)
k + Λ

(s)
k

(

Λ
(s)
k +Σn

)−1 (

wi − µ(s)k

)

]

,

where p(zi = k |w, θ(s)) is computed as in Appendix B.2.

Given a noisy image, corrupted by additive whiteN (0,Σn) noise:

1. Apply wavelet transform, obtain scaling coefficients wt0, and detail coefficients

w\t0.

2. Learn model parameter posteriors by running a proposed Gibbs sampler on training

data w\t0 until burn-in.

3. Collect S samples θ(s) = {π(s)
k ,Λ

(s)
k }Ks

k=1.

4. Estimate posterior hidden state probabilities p(zti | w, θ) via the belief propagation

algorithm.

5. For each sample, estimate denoised coefficients in closed form:

E
[

xti | w, θ(s)
]

=

Ks
∑

k=1

p(zti = k | w, θ(s))E
[

xti | wti,Λ
(s)
k

]

=

Ks
∑

k=1

p(zti = k | w, θ(s)) Λ(s)
k ( Λ

(s)
k +Σn)

−1wti.

6. Average over samples of varying complexity E
[

xti | w, θ(s)
]

to get posterior mean

of detail coefficients.

7. Apply inverse wavelet transform to a combination of observed scaling coefficients

wt0 with estimated detail coefficients xti.

Algorithm 4: The overall learning algorithm for empirical Bayesian image denois-

ing with HDP-HMTs.
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Given current state of global mixture weights β, state-specific model parameters and

transition distributions {Λk, π
d
k}Kk=1, hidden state variables zti and clean wavelet

coefficients xti:

1. Remove the statistics of previous assignments of features to classes:

• update hidden state transition counts:

n
d(ti)
\ti (zPa(ti), zti)← nd(ti)(zPa(ti), zti)− 1;

n
d(ti)
\ti (zti, zCh(ti))← n

d(ti)
\ti (zti, zCh(ti))− 1

• update the inverse-Wishart posterior hyperparameters {κzti , νzti ,∆zti} to ac-

count removal of xti

2. Sample state assignments using BP with local evidence p(wti | zti) =
N (wti; 0,Λzti +Σn):

(a) Compute messages upwards from the leaves up to the roots:

for leaf nodes:

mtj
ti (ztj) ∝

∑

zti

πd(ti)
ztj

(zti)p(wti|zti)

for non-leaf nodes:

mtj
ti (ztj) ∝

∑

zti

πd(ti)
ztj

(zti)p(wti|zti)
∏

tk∈Ch(ti)

mti
tk(zti)

(b) Sample hidden states while traversing downwards:

for non-leaf nodes:

p(zti | zPa(ti),wt·, π,Λ,Σ) ∝ πd(ti)
zPa(ti)

(zti)p(wti|zti)
∏

tj∈Ch(ti)

mti
tj(zti)

for leaf nodes:

p(zti | zPa(ti),wt·, π,Λ,Σ) ∝ πd(ti)
zPa(ti)

(zti)p(wti|zti)

3. Sample clean wavelet coefficients by drawing a random vector from

p(xti | zti, wti) ∝ N
(

xti;
(

Λ−1
zti

+Σ−1
n

)−1
Σ−1

n wti,
(

Λ−1
zti

+Σ−1
n

)−1
)

4. Add the statistics of new assignments of features xti to classes zti:

• update hidden state transition counts:

nd(ti)(zPa(ti), zti)← n
d(ti)
\ti (zPa(ti), zti) + 1;

nd(ti)(zti, zCh(ti))← nd(ti)(zti, zCh(ti)) + 1

• update the inverse-Wishart posterior hyperparameters {κzti , νzti ,∆zti} to ac-

count addition of xti

5. Sample model parameters {Λk, πk}Kk=1:

(a) Sample direction-specific transition distributions by drawing a random

Dirichlet-vector from

πd
k ∼ D

(

nd(k, 1) + αβ1, . . . , n
d(k,K) + αβK

)

(b) Sample Λk’s by drawing a random Inverse-Wishart vector from

p(Λk|x, z, H) ∝ p(Λk |H)
∏

j:zj=k

p(xj |Λk)

6. Global mixture weights β can be resampled via an auxiliary variable method [26].

Algorithm 5: Blocked Gibbs sampler for truncated HDP-HMTs when data is cor-

rupted by additive N (0,Σn) noise.
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APPENDIX E: SUPPLEMENTARY INFORMATION

HDP-BOW (sfp7)[75.3] HDP-BOW (sift)[82.4]

HDP-HMT (sfp7)[80.7] HDP-HMT (sift)[86.5]

FIG 21. Confusion matrices for the 8 scenes category dataset [16] using HDP-BOW (top

row) and the HDP-HMT (bottom row) models in wavelet (left column) and SIFT domain

(right column). Average performance across all categories is shown in parentheses.
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HDP-BOW [75.9] HDP-BOW [69.7]

HDP-HMT [81.8] HDP-HMT [77.1]

FIG 22. Confusion matrices for the 13 scenes category dataset [7] (left) and 15 scenes cate-

gory dataset [13](right), using HDP-BOW (top row) and HDP-HMT (bottom row) models

in SIFT domain. Average performance across all categories is shown in parentheses.
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σ Mandrill Peppers

5 35.44 / 0.960 35.52 / 0.962 37.52 / 0.950 37.53 / 0.950

10 30.84 / 0.896 30.90 / 0.900 33.99 / 0.914 33.92 / 0.912

15 28.56 / 0.835 28.58 / 0.837 32.02 / 0.885 31.91 / 0.883

25 26.16 / 0.730 26.10 / 0.724 29.64 / 0.842 29.47 / 0.836

50 23.39 / 0.540 23.57 / 0.538 26.14 / 0.729 26.18 / 0.745

75 22.14 / 0.435 22.54 / 0.449 23.58 / 0.586 24.37 / 0.678

100 21.61 / 0.379 21.95 / 0.402 22.13 / 0.511 23.21 / 0.635

125 21.27 / 0.348 21.50 / 0.370 21.08 / 0.463 22.36 / 0.610

Emp. Bayes Transfer Emp. Bayes Transfer

σ Cameraman Einstein House

5 37.50 / 0.954 37.56 / 0.954 38.27 / 0.943 38.23 / 0.943 38.82 / 0.945 38.68 / 0.946

10 33.29 / 0.914 33.30 / 0.915 34.91 / 0.892 34.84 / 0.890 35.47 / 0.895 35.35 / 0.897

15 31.05 / 0.879 30.99 / 0.879 33.18 / 0.855 33.06 / 0.851 33.80 / 0.867 33.43 / 0.865

25 28.45 / 0.823 28.34 / 0.821 30.94 / 0.795 30.91 / 0.795 31.67 / 0.832 31.21 / 0.827

50 25.25 / 0.704 25.30 / 0.730 27.65 / 0.663 28.26 / 0.712 28.40 / 0.753 28.23 / 0.761

75 23.07 / 0.569 23.50 / 0.669 25.64 / 0.564 26.80 / 0.664 25.56 / 0.611 26.49 / 0.716

100 21.67 / 0.486 22.40 / 0.627 23.65 / 0.443 25.84 / 0.635 24.34 / 0.560 25.32 / 0.692

125 20.65 / 0.438 21.57 / 0.593 24.30 / 0.514 25.01 / 0.609 21.87 / 0.406 24.45 / 0.668

Emp. Bayes Transfer Emp. Bayes Transfer Emp. Bayes Transfer

TABLE 2

Peak signal-to-noise ratio (PSNR) and mean structural similarity (SSIM) of a set of denoised

standard images of size 256×256 with the HDP-HMT using the Empirical Bayesian (Emp. Bayes)

and the transfer denoising (Transfer) approach.

σ Barbara Boat Couple

5 37.88 / 0.962 37.67 / 0.960 37.19 / 0.940 36.80 / 0.931 37.21 / 0.949 37.16 / 0.949

10 34.13 / 0.932 33.63 / 0.925 33.62 / 0.887 33.37 / 0.878 33.52 / 0.901 33.41 / 0.898

15 32.00 / 0.904 31.29 / 0.891 31.68 / 0.847 31.49 / 0.840 31.54 / 0.861 31.39 / 0.856

25 29.38 / 0.850 28.35 / 0.825 29.32 / 0.785 29.21 / 0.780 29.14 / 0.797 29.05 / 0.794

50 25.60 / 0.694 24.69 / 0.692 26.19 / 0.658 26.36 / 0.685 25.81 / 0.650 26.12 / 0.686

75 23.50 / 0.581 23.18 / 0.614 25.00 / 0.576 24.77 / 0.623 24.31 / 0.574 24.63 / 0.619

100 22.40 / 0.524 22.32 / 0.563 23.68 / 0.549 23.79 / 0.586 23.45 / 0.534 23.69 / 0.574

125 21.70 / 0.491 21.77 / 0.535 22.84 / 0.513 23.06 / 0.555 22.74 / 0.496 22.98 / 0.539

Emp. Bayes Transfer Emp. Bayes Transfer Emp. Bayes Transfer

σ Hill Lena Man

5 37.00 / 0.942 36.97 / 0.941 38.65 / 0.945 38.51 / 0.943 37.47 / 0.950 37.43 / 0.950

10 33.36 / 0.881 33.31 / 0.878 35.67 / 0.913 35.42 / 0.909 33.60 / 0.900 33.53 / 0.898

15 31.53 / 0.833 31.45 / 0.828 33.96 / 0.889 33.75 / 0.885 31.57 / 0.857 31.50 / 0.855

25 29.40 / 0.760 29.37 / 0.757 31.71 / 0.845 31.51 / 0.848 29.20 / 0.784 29.17 / 0.786

50 26.46 / 0.621 26.94 / 0.661 27.71 / 0.692 28.56 / 0.784 26.28 / 0.656 26.46 / 0.684

75 25.39 / 0.574 25.60 / 0.602 26.65 / 0.683 26.80 / 0.735 24.79 / 0.585 25.02 / 0.624

100 24.52 / 0.533 24.74 / 0.568 25.49 / 0.650 25.79 / 0.701 23.81 / 0.540 24.07 / 0.584

125 23.87 / 0.504 24.09 / 0.541 24.51 / 0.613 24.82 / 0.681 23.10 / 0.508 23.34 / 0.555

Emp. Bayes Transfer Emp. Bayes Transfer Emp. Bayes Transfer

TABLE 3

Peak signal-to-noise ratio (PSNR) and mean structural similarity (SSIM) of a set of denoised

standard images of size 512×512 with the HDP-HMT using the Empirical Bayesian (Emp. Bayes)

and the transfer denoising (Transfer) approach.
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