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We develop hierarchical, nonparametric Bayesian models of multiscale
image representations. Individual wavelet coefficients or features are marginally
distributed as Dirichlet process (DP) mixtures, yielding the heavy-tailed marginals
characteristic of natural images. The hidden assignments of features to clus-
ters are then globally linked via a tree-structured graphical model. The result-
ing multiscale stochastic process automatically adapts to the varying com-
plexity of different datasets, and captures global, highly non-Gaussian statis-
tical properties of natural images. This hierarchical Dirichlet process hidden
Markov tree (HDP-HMT) framework extends prior work on hidden Markov
trees, local Gaussian scale mixtures, and HDP hidden Markov models. By
truncating the potentially infinite set of hidden states, we develop Monte
Carlo methods which exploit belief propagation for efficient learning from
large datasets. Our results show that the HDP-HMT captures interesting struc-
ture in natural scenes, and leads to effective algorithms for image catego-
rization and denoising. Moreover, by transferring statistics learned from a
database of natural images, we demonstrate significant improvements in de-
noising highly distorted images over a baseline empirical Bayesian approach,
which uses image statistics learned only from the noisy image.

1. Introduction. The visual information in typical computational vision tasks
exhibits highly structured, but complex variability. In most tasks ranging from low-
to high-level vision, drawing reasonable inferences requires a priori knowledge on
the regularities of the stimuli via statistical modelling, often done in a simplifying
feature-based representation. In this paper we will consider representations which
are multiscale, commonly used in computational vision. Multiresolution represen-
tations have also natural ties to tree-structured graphical models, which benefit
from efficient exact estimation methods [18]. One highly successful model adopt-
ing these ideas is the Hidden Markov Tree (HMT) - model [4]. A HMT consists
of a tree of discrete-valued latent state-assignment variables, which generate pyra-
midally organizable image features. The dependency-structure in the model is ex-
tremely simple: Conditioned on a hidden state assignment variable, the associated
observation is independent from the rest of the the tree. Despite such simplicity in
model structure, it enables modeling of complex marginal distributions, and joint
dependencies: As each value of a hidden state assignment variable describes the
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random choice of emission distribution for the associated observation, observations
are marginally represented as mixture models. Given an appropriate number of
components, this enables effective modeling of the heavy-tailed marginal distribu-
tions observed in natural imagery. The Markov-dependencies between the hidden
states then enable capturing higher-order dependencies between the observations.

Nonetheless, the HMT has a problem of great practical significance: it doesn’t
include a mechanism for the allocation of an appropriate number of components
to the various scales in the model. This problem has been tried to solve previ-
ously by using information criterion-based model selection, but the hierarchical
structure of the model makes the approach computationally very challenging and
problematic for many real-life applications [23]. In this article, we present a non-
parametric Bayesian modeling framework, Hierarchical Dirichlet Process Hidden
Markov Tree (HDP-HMT), which provides an alternative to the model selection,
and extends the HMT in several important ways. Most importantly, the number of
hidden states in the models are unbounded, and are determined in a data-driven
and -adaptive way. It is accomplished by associating each state transition mixture
a Dirichlet Process Mixture, and coupling them in learning with the Hierarchical
Dirichlet Process (HDP)-framework [26].

We propose Monte Carlo learning algorithms to estimate the posterior distribu-
tions of the models’ parameters, which allow learning from large and potentially
noisy image databases, and develop effective algorithms for scene categorization
and image denoising. Scene categorization is directly useful in applications such
as image annotation and retrieval [29]. The global identity and structure of natural
scenes also provides important contextual cues for the detection and recognition
of objects [27, 28]. In addition to being an important application as itself, image
denoising is commonly used in assessing image model performance.

When making predictions about clean image data, most of the denoising meth-
ods rely solely on statistics learned from the noisy image at hand, such as in em-
pirical Bayesian approaches [19], and engineering-based approaches [6]. At high
noise levels there can be very little image information available, and regularities to
learn about clean images to be used for making predictions. Such statistics could be
learned a priori from a database of clean images, and there are some recent meth-
ods adopting these ideas [5, 21], but they cannot learn additional statistics from the
noisy image in a principled fashion. Accomplishing such is straightforward in our
case, as we show in section 5 where we propose a framework for denoising based
on transfer learning, applicable also for other restoration tasks.

We begin in Sec. 2 by reviewing previous models for multiscale representa-
tions of natural images based on Gaussian scale mixtures, and tree—structured la-
tent variable models. The section also describes nonparametric Baysian methods,
and adapts them for unstructured image representations. We then integrate these
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research themes in the HDP-HMT, and develop Monte Carlo methods for learning
from training images in Sec. 3, and evaluate its suitability as a model for natural
images and scenes in scene categorization (Sec. 4), and denoising (Sec. 5). In cate-
gorization, we also demonstrate the importance of capturing dependencies between
image features by comparing HDP-HMT to its “bag-of-feature” version, and that
of the feature representation used. In denoising, we also show the significant bene-
fits of using statistics from both clean images and the noisy image in estimation, by
comparing denoising with the HDP-HMT using an empirical Bayesian and a trans-
fer learning-based algorithm. In both of these image analysis tasks, we compare
the performance of the HDP-HMT against state-of-the-art methods.

2. Multiscale Analysis of Natural Images. Images of natural scenes typi-
cally contain large, homogeneously textured regions, as well as localized intensity
changes caused by occlusion boundaries. Their statistics are thus most simply char-
acterized in representations which are jointly localized in spatial position and fre-
quency [24, 28]. These observations have motivated the use of many wavelet-based
approaches to image modeling. In these methods, images are first decomposed us-
ing a linear basis into a pyramid of wavelet coefficients, whose statistics are then
modeled.

There are numerous efforts to capture the regularities existing in the decom-
posed images, ranging from local to global statistical analysis of the transform co-
efficients [24]. In the following, we describe briefly the multiscale decompositions,
and the models used to describe their statistics, most relevant to our work.

In image restoration tasks, in which images are analyzed and processed in a
transformed space, the underlying decomposition needs to be invertible. This is the
case for our image denoising algorithms developed later. In scene categorization,
there is no such restriction. In the following, in addition to invertible wavelet trans-
forms, we will also discuss non-invertible SIFT-descriptor pyramids, which we
show in section 4 lead into improved scene categorization results over wavelets.

2.1. Wavelet Representations. Wavelet transforms decompose images at multi-
ple scales by recursively filtering with a scaled, band-pass kernel function. This in-
vertible linear transform produces a set of low-pass scaling coefficients, and higher
frequency detail coefficients, organized in a pyramid (see Figure 1). Although the
fixed set of basis functions (consisting of translated, dilated, and rotated versions
of a common kernel) have not been designed a particular class of images in mind,
they are similar to those obtained using sparse coding methods aiming to find a
linear basis optimal (in terms of maximal sparseness and statistical independence
of transform coefficients) for natural images [8, 171"

Las well as to the receptive fields of simple cells in primary visual cortex
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(a) Basis functions illustration (b) Natural image responses (high-pass
residual not shown)

Z

FIG 1. lllustration of basis functions for 3"%-order steerable pyramids, and the transform coefficients
of a natural image (peppers). The top-left basis function corresponds to a low-pass filter/scaling
function, whereas the other basis functions illustrated are oriented band-pass filters. Each of the
illustrated basis function images have been obtained by reconstructing a steerable pyramid with a
single non-zero coefficient positioned at the center of the corresponding subband, after which they
have been cropped and resized for visualization purposes.

Despite these similarities between wavelet transforms, there are differences of
significant importance for modeling and analysis purposes. For example, trans-
forms which are not translational invariant may be problematic for many image
analysis tasks: while the critically sampled orthogonal wavelet transforms approx-
imately decorrelate or whiten natural images, and thus lead to effective compres-
sion algorithms, their lack of translational invariance may lead to instability and
highly visible aliasing artifacts (arising from the critical sampling) in the pres-
ence of noise. Steerable pyramids address these issues via an overcomplete basis,
or frame, optimized for increased orientation selectivity [22]. While the statistics
of such non-orthogonal transformations are more complex, they are advantageous
for image analysis [11, 19]. These representations are also used in the wavelet-
based image denoising methods we propose in Section 5, as in several other leading
wavelet-based denoising methods (such as in [15, 19]).

2.2. SIFT-descriptor pyramids. The SIFT-transform [14] is a feature-extraction
method which has been used extensively in recent years in various visual recogni-
tion tasks. It describes image information with histograms of oriented gradients
within a neighborhood, which is split into a grid of analysis-subregions, around of
point of interest. Within each of these subregions, oriented gradients are computed
for each pixel, and a subregion-specific histogram with direction-quantized bins is
built based on them. The full SIFT-descriptor is a 128-dimensional vector, consist-
ing of 8-bin histograms (each representing gradient strength within that orientation
regime), one for each of the 4 x 4 subregions.
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FIG 3. Empirical histogram (blue solid line) of a natural image subband coefficient values with
maximum likelihood Gaussian fit overlaid (red dashed line).

Previous comparative studies have shown that for scene categorization tasks,
best performance is attained by computing features on a dense, regular grid [1, 7],
rather than at sparse interest points [14, 20]. The intuitive explanation for this phe-
nomenon is that the presence of open, textureless regions is highly indicative of
certain scene categories [ 16, 28]. In this work, we extract features from overlapping
patches spaced on a grid. To provide further discriminative power, we also rescale
the extraction window and extract dense features at multiple coarser scales. To re-
duce the dimensionality of the extracted features, they are vector-quantized into a
dictionary of visual words. Figure 2 shows example natural scene images (resized
into multiple scales), and corresponding SIFT-codeword pyramids, in which col-
ors encode visual words from a 1000-element dictionary, obtained using K-means
clustering.

2.3. Models for Statistics of Individual Coefficients. Wavelet coefficients typi-
cally have highly kurtotic marginal distributions, with “heavy tails” indicating that
extreme values occur frequently compared to Gaussian distributions. A class of dis-
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tributions that can provide good matches to the heavy-tailed marginals of individual
coefficients x;, are mixture distributions. One widely used continuous mixture is
the Gaussian scale mixture, which models x; as the product of two independent
variables:

(1 T; = \/viu; v; >0, u; ~N(0,A)

Marginalizing the scalar multiplier v; mixes Gaussians of varying scales:
@ i) = [ A (@i30.0) d6(8)

A variety of continuous mixing distributions G (A) provide good models of wavelet
statistics [30]. In some cases, however, even simple two—component mixtures are
effective:

3) zi ~ wN(0, Ag) + (1 = mN (0, Ay)

Here, 7 is the probability that x; is drawn from an “outlier’” component with large
variance Ag, and A; is smaller to capture the many near—zero coefficients. Such
discrete mixtures have important computational advantages, and have been suc-
cessfully used for image denoising [3].

An example of using this density for modeling individual wavelet subband coef-
ficients is shown in Figure 4. Even though the binary mixture provides a closer fit
than a single Gaussian, many more components are needed to build a highly accu-
rate model. However, choosing too many components leads to overfitting, and poor
generalization in testing. Also for different datasets (such as for different images,
or for a larger set of images) different complexities may be appropriate.

A practical solution is to use a Dirichlet process (DP) mixture of Gaussians,
which assumes a discrete mixture of unbounded number of Gaussians, and uses
a regularizing prior on the mixture weights 7. Through this prior, which is part
of the core machinery built in this paper, the appropriate dimensionality is deter-
mined in a data-driven fashion. The marginal distribution for a wavelet coefficient
x; under this model can be written as follows:

) plai) = mif (i | 6k) =Y meN (2430, Ag)
=1

k=1

The associated mixing distribution is discrete, and is defined as follows:

) G(A) = md(A— Ay)
k=1
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FIG 4. Empirical histograms (blue solid lines) of a natural image (Barbara) subband coefficient
values with best fitting instances of three different models (red dashed lines) overlaid. Models from
left to right: Gaussian, mixture of two Gaussians, Dirichlet process mixture of Gaussians. Below
each plot is the relative entropy between the empirical histogram (using 500 variable-size bins) and
the fitted model, as a fraction of the histogram entropy.

where 7, denotes the mixing proportion for component %, associated with param-
eters Aj. The stick-breaking prior, which regularizes the infinite mixture, denoted
by m ~ GEM(7), defines the mixture weights using beta random variables:

(6) =, | [(1—7)) 7y ~ Beta(1,7)

The construction of the countably infinite set of mixture weights 7 can be seen
as breaking proportions of a stick. It is started by breaking a random proportion
given by Beta(1, ) of a stick of length one. The consecutive breaks are done to
the part of the stick, that’s remaining after previous breaks, each with a random
proportion again sampled from Beta(1,~). The component parameters are inde-
pendently sampled as A, ~ H, where H denotes a prior over component parame-
ters. Throughout this paper, we use conjugate inverse—Wishart H priors for zero—
mean Gaussian component distributions of the continuous wavelet coefficients, and
Dirichlet H for multinomial models of vector quantized SIFT descriptors.

In the generative process under the model, observations are then generated by
first choosing a mixture component z; with probabilities given by the mixture
weights, and then drawing an observation x; from the corresponding emission dis-
tribution f(6,,). For the continuous wavelet coefficients, this distribution f(6,,) =
N (0, A,,), whereas for discrete SIFT-codewords such as those shown in Figure 5,
f(8;,) = Multinomial (6,,).

When modeling multiscale data, it is often useful to separate data into groups,
and yet allow the groups to be linked - to share statistical strength. One flexible
framework for sharing mixture components, among groups of related data, is the
hierarchical Dirichlet process (HDP) [26]. In this framework, group-specific DP
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F1G 5. Bag-of-Words HDP for a SIFT-descriptor pyramid. Each of the pyramid scales correspond to
different groups (indexed by t € [1,. .., 4]), and are each modeled using DP-mixtures of multinomi-
als, which share mixture components 0y, via the HDP-framework.

mixture models are coupled in learning by a global DP mixture with infinite set of
shared mixture components #, and their global mixing proportions 3. For observa-
tions xj; within a group j,

(7 p(xji | 7, 01,00,...) = Zﬁj(k‘)f(xji | Ok)
k=1

The sharing of mixture components is accomplished using the following gener-
ative process: Global mixture weights for an infinite set of shared mixture compo-
nents {0} are first sampled as in eq. (6). Each of the J groups (see Fig. 5) then
reuses these same components in different proportions 7; = (7,1, 72, . ..):

®) m; ~ DP(a, §) B~ GEM(y)

By defining 3 to be a discrete probability measure (samples from a DP are discrete
with probability one), component sharing is ensured with high probability. Here, 5
determines the mean frequency of each component, while a controls the variability
of component weights across groups [260]. Fixing these parameters, observations
are then independently sampled as follows:

©) Zji ~ T ji| i ~ f (02;)
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Rather than strictly constraining the number of latent states, the HDP’s stick—
breaking prior places a softer bias towards the simplest models which explain ob-
served data. As we demonstrate in Sec. 4, this leads to rich models whose com-
plexity grows as additional data is observed.

2.4. Hidden Markov Trees for Global Statistics. Although natural images of-
ten lead to uncorrelated wavelet coefficients, they retain important non—Gaussian
dependencies”. In particular, large magnitude coefficients tend to cluster at nearby
spatial locations, and persist across multiple scales [4, 30]. In overcomplete rep-
resentations such as steerable pyramids, there are also significant dependencies
between orientations. We can see these dependencies over orientation, scale, and
position in the (gray-scale value coded) detail coefficients of the ‘Peppers’-image
shown in Figure 8, and from the ‘bow-tie’-shapes in the conditional histograms
of a wavelet coefficient conditioned on its adjacent wavelet coefficient, shown in
Figure 11 (rows labeled ‘Images’). These properties of wavelet-decomposed im-
ages are utilized in various image models. One of the most effective wavelet-based
image denoising algorithms employs local Gaussian scale mixtures relating each
wavelet coefficient only to its nearest neighbors in location and scale [19]. In this
article, we instead develop a global graphical model of multiscale image decom-
positions.

The scale-recursive operations underlying wavelet decompositions suggest mod-
els defined on Markov trees [31]. For images, these graphical models associate de-
tail coefficient z4; with a single coarser scale parent xp, ), and four finer scale
children {x; | tj € Ch(ti)}. Tree-structured Gaussian random fields have been
used to capture correlations among wavelet coefficients [31], and to model the la-
tent multipliers underlying a global Gaussian scale mixture [30]. In the stochastic
process defined by the latter model, wavelet coefficient vectors are marginally dis-
tributed as infinite Gaussian Scale Mixtures. There are then two random processes
determining how these observations evolve in the tree: A premultiplier MAR pro-
cess captures self-reinforcing dependencies while a white noise process controls
correlation structure among wavelet coefficients, which are then generated via a
nonlinearity. Although the underlying representation is parsimonious, it suffers in
expressiveness as the authors fix the order of the multiplier process and consider
only fixed parametric forms of nonlinearity in the multiscale process.

Alternatively, the discrete mixture of eq. (3) has been generalized to define a
binary hidden Markov tree (HMT) [4]. In HMTs, the mixture component z;; gen-
erating detail coefficient xy; is influenced by the corresponding parent coefficient:

(10) 2t | 2Pa(ti) ~ Tepages) Ty | 26 ~ N(0,A,;)

“this is the case also with bases obtained with the sparse coding methods mentioned earlier
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As before, detail coefficient z;; may be generated via states zy; of low or high
variance. However, by associating each parent state k with a different transition
distribution m,, HMTs also capture dependencies among nearby coefficients. For
example, cascade effects of large magnitude coefficients can be obtained by as-
sociating transitions from high-variance parent state to high-variance child state
likely.

Zt4
25
Zt3

212

T2

FIG 6. An extended binary HMT model for the wavelet coefficients of a two-scale, four-orientation
wavelet transform. The hidden discrete states zi; generate vectors of observed features x+; spanning
over multiple orientations, and a spatial region (in the above illustration t = 1). The states at
neighboring locations and scales are coupled by state transition distributions m, which in addition
to emission distribution covariances are chosen independently for each scale.

Although the HMT originally defined separate graphical models for each orien-
tation subband, states may alternatively generate vectors of wavelet coefficients [23],
as illustrated in Figures 6 & 7. Each of these wavelet vectors x; span over multiple
(4 in Fig. 6 & 7) orientations, and for example also a spatial region as illustrated in
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Figure 6 - what is only required is that the emissions have equal dimension, and the
hidden states which generate them can be arranged as a tree. For a single decom-
posed image, there is a forest of 7" trees (or a single tree, if 7' = 1), equal to the
number of coarsest scale observation vectors®. Dependencies among these multi-
dimensional observations are then better captured by higher—order discrete models.
To do this, one must select an appropriate number of hidden states K, as well as
the pattern used to share states among different coefficient vectors. For example,
the hierarchical image probability (HIP) model [23] shares parameters within each
scale, and optimizes K via a minimum description length (MDL) criterion. This
MDL-based model selection may however lead to combinatorial problems requir-
ing greedy approximations, and the asymptotic justifications of MDL are poorly
suited to small datasets. In the following section, we propose an alternative non-
parametric approach which learns such model structures from training images, in
a data-driven and -adaptive way. Furthermore, this approach enables efficient and
natural mechanisms for reusing statistics learned from clean images in image de-
noising.

FIG 7. Alternative representation of the extended binary HMT model for the wavelet coefficients of a
two-scale, four-orientation wavelet transform shown in Figure 6.

3. Hierarchical Dirichlet Process Hidden Markov Trees. Hierarchical Dirich-
let processes have been previously used to define an HDP-HMM which learns the
structure of a countably infinite hidden Markov chain from training data [26]. In
this section, we develop an HDP hidden Markov tree (HDP-HMT) which captures
the global statistics of wavelet decompositions or locally extracted image features.

3For some decompositions, the number of observed scaling coefficients ¢ differs from 7', but it
doesn’t affect the modeling as they are not part of the generative process.
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In this section we also develop two Monte Carlo methods for estimating the pos-
terior distributions of HDP-HMT parameters from training images. The collapsed
Gibbs sampler employs Rao—Blackwellization to marginalize the underlying in-
finitely many infinite—dimensional transition distributions ﬂ'g, and emission distri-
bution parameters ;; extending the direct assignment sampler by Teh et al.[26].

While the collapsed Gibbs sampler resamples individual assignments of features
to hidden states, the truncated Gibbs sampler, on the other hand, resamples jointly
entire trees of state assignments. This is made possible by considering truncated
representations of the HDP, and results in more efficient blocked sampling algo-
rithms, allowing learning from large datasets [12]. These truncations also provide
a mechanism for balancing computational efficiency and representational accuracy,
while maintaining a nonparametric model.

FiG 8. An HDP-HMT for the coefficients of two-scale, four-orientation wavelet transform.
The hidden discrete states z:; generate observed detail coefficients x;, emitted by four-
dimensional zero-mean Gaussian distributions, with covariance A ,,. The states at neigh-
boring locations and scales are coupled by child position — dependent transition distribu-
tions 71',‘3. A global measure (3 is used to couple these transitions when learning, encourag-
ing reuse of hidden states.

3.1. Statistical Model. Consider a hidden Markov tree, as in Fig. 8, with a
countably infinite state space z;; € {1,2,...}. Each value k of the current state
indexes a different transition distribution 7¢ = (7, 7{,,...) over child states in

different directions d. We couple these transitions via a shared DP prior:
(11) mi ~ DP(a, ) B ~ GEM(v)

The simplest approach ties all four children of each parent to follow the same tran-
sition distribution [11]. However, as reported in [12], we have found that allowing
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a distinct transition distribution wg for each of the four child directions d more
accurately models the asymmetries present in natural images. Given these infinite
transition distributions, visual features are generated via the following coarse—to—
fine recursion:

(12) 2ti | ZPa(us) ~ T, wii | 2 ~ F(0:,)

By defining /3 to be a discrete probability measure, we ensure with high probability
that a common set of child states are reachable from each parent state [26].

Analogously to the standard HDP of Fig. 5, this hierarchical construction en-
courages reuse of states when learning. However, the group associated with each
observation is now dynamically determined by the state of its parent node, rather
than being fixed a priori. This allows the HDP-HMT to learn complex patterns
characteristic of multiscale observation sequences, and avoids the need to specify
a fixed scheme for sharing states among observations. Furthermore, by defining a
prior on infinite models, the HDP-HMT avoids the model selection issues consid-
ered by previous applications of Markov trees [23] and topic—based visual scene
models [1, 7, 20].

Let us know consider a situation, in which observations wy; are contaminated
with zero-mean Gaussian noise of known variance 3, so that wy; ~ N (x4, 3y,),
where xy; is a latent clean coefficient vector. To properly deal with such scenario,
we augment the basic HDP-HMT with a set of unobserved clean coefficients xy;, as
illustrated in Figure 9. As the statistics of noise can now be separated from that of
the signal, estimation of unobserved clean coefficients can now use also statistics
learned from sets of clean images. Figure 10 illustrates a graphical model for a
further HDP-HMT extension which also generates an observed database of clean
images. In the following, learning algorithms are developed for the basic HDP-
HMT shown in Figure 8. See Appendix D for learning algorithms for use with
noise-contaminated observations.

3.2. Learning by Collapsed Gibbs Sampling. To learn the posterior distribu-
tions of the basic HDP-HMT parameters, the proposed Gibbs sampler alternates
between sampling assignments z;; to hidden states and global transition probabil-
ities 3, as summarized in Algorithm 1. Given fixed values for these variables, the
state—specific transition distributions 75, and emission-distribution parameters 6y,
can be marginalized in closed form. Such Rao-Blackwellization is guaranteed to
reduce the variance of Monte Carlo estimators [25].

In the first first stage of the algorithm, assignments of features to clusters are re-
sampled. In contrast with standard HDP models [26], the HDP-HMT dynamically
regroups observed features as parent states indexing the groups are resampled. In
sampling, we consider candidate states z;; corresponding to every state which is
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FI1G 9. A two-scaled HDP-HMT in which hidden discrete states zi; generate noise—free features x;. Observations wy; are corrupted by additive Gaussian
noise with covariance %n,. States at neighboring locations and scales are linked by direction-dependent transition distributions w¢. A global measure (3
couples these transitions when learning, encouraging reuse of hidden states.
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R/

F1G 10. A graphical representation of a two-scale model for transfer denoising. The leftmost trees
generate observed wavelet coefficients of clean data. The rightmost tree generates observed noisy
coefficients of an image to be denoised. In denoising, we wish to find the posterior means of the
unobserved clean coefficients x ji.
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Given current state of global mixture weights 3, and assignments of features to states z:

1. Sample a random permutation of integers indexing images and their nodes :.

2. Sample state assignments z;, for each node ¢i.

(a) Remove feature from cached class-specific statistics:

e update hidden state transition counts:

nfﬁfi)(zlaa(n), z1i) — n) (zpoay, 200) — 1

d(ti d(ti
n\if )(Ztia 2Cn(ti)) n\if )(Zti7 Zen(ti)) — 1
e update the inverse-Wishart posterior hyperparameters {x.,,, Vz,,, Az,, }
to account removal of x;
(b) Determine predictive likelihoods for each candidate class:
1
Pz | 2, %\, H) = Student-t, g1 (a:ti; 0, I/Aﬁ)
(c) Sample new class assignment from the following multinomial:
(245 | Z\ 14 B,x) o< p(24 | Z\ 14 B)p(wi |Z,x\ti7 H)
where p(zy; | Z\4;, 3) has different forms depending on the node position:

leaf nodes:
"ilif-i) (2Pa(ti)s 2ti) + Bz,
”igi) (2Pa(ti), -) + @
other nodes:
n(\igi)('ZPa(“)’ 2u) + Oz nfi;“) (2tis 200) + Bz + 6(2patiy, 24)0 (24, 201)
nl\il(tfi)(ZPa(ti)’ ) +a nl\igi)(zti, )+ + 0(2pagri), 2ti)
H n‘\iﬁfj) (28, 2t5) + Pz,
tjeCh(ti)\tl "‘\igi)(z“, J+a

where t] € Ch(ti), and d(tl) = d(ti).
(d) Add feature to cached class-specific statistics:
e update hidden state transition counts:
n (2pagiys 20) n(\igi)(zl:’a(ti)a 2¢i) + 1
ndt) (244, ZCh(ti)) — ndt) (2ti ZCh(ti)) +1
e update the inverse-Wishart posterior hyperparameters {x.,,, Vz,,, Az,, }
to account addition of xy;

3. Global mixture weights /3 can be resampled via an auxiliary variable method [26].

Algorithm 1: Collapsed Gibbs sampling algorithm for an HDP-HMT model with
zero-mean multivariate Normal emission distributions, and inverse-Wishart priors
on their covariance matrices. We illustrate the resampling of assignments zy; to
hidden states and global transition probabilities 3. A full iteration of the Gibbs
sampler applies the feature assignment updates to all images in random order. For
efficiency, we cache and recursively update the state-specific statistics.
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used at least once elsewhere in the tree, as well as a potential new state. This predic-
tive rule allows HDP-HMTs to determine state space cardinality in a data—driven
fashion. The number of states grows when new clusters are added, and shrinks,
when all observations currently assigned to a cluster are removed.

In the second stage of the algorithm, the global transition probabilities 8 are
resampled. Given fixed assignments z = {z;;} of coefficients to hidden states, (3
can be resampled using auxiliary variable methods [26].

We provide high—level derivations for the sampling updates underlying the Al-
gorithm 1 in Appendix A. Although this direct assignment sampler desirably em-
ploys Rao—Blackwellization [25] to avoid explicitly sampling some latent variables,
it can exhibit slow mixing because it only updates one hidden state assignment at a
time. In addition, the recursive updates of sufficient statistics needed to marginal-
ize parameters can be costly when performed after every feature reassignment. To
address these issues, we propose in the following sections an alternative truncated
sampler, which uses finite approximations of the Dirichlet process to allow joint
resampling of entire trees of state assignments.

3.3. Truncated Representations. There are two basic methods for producing
finite approximations to DP models. The first truncates the stick—breaking con-
struction of eq. (6) by setting 3; = 1 for some sufficiently large L. In this article,
we instead use alternative, “weak limit” approximations which sample 3 from a
K—dimensional finite Dirichlet distribution with symmetric parameters:

We then take 3 as the weight vector for a finite, K—component mixture model with
parameters 0, ~ H as before. It can then be shown that the predictions based
on this finite model converge in distribution to those of a corresponding Dirichlet
process DP(v, H) as K — oo [9, 10]. A similar finite approximation exists for
the HDP [26] of Fig. 5, in which /3 is sampled as in eq. (13) and group—specific
mixture weights are drawn according to

(14) = (T, ..., k) ~ D(afi, ..., abK)

The next subsection extends this approximation to the HDP-HMT to develop a
truncated Gibbs sampling algorithm.

It is important to note that the truncation level K is not taken to be the number
of mixture components observed in the data, but rather a loose upper bound on that
number. Indeed, as we show in Sec. 4, the Dirichlet priors of eqs. (13, 14) cause
the sampler to explain observations via a dynamically chosen subset of the pool
of available mixture states. Theoretical results are available which characterize the
mixture size needed for accurate posterior approximations [10].
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3.4. Blocked Gibbs Sampler for Truncated Representations. Given a trunca-
tion level K, our truncated Gibbs sampler for the basic HDP-HMT, summarized in
Algorithm 2, alternates between blocked resampling of trees of state assignments
7, global mixture weights (3, and state-specific model parameters and transition
distributions {0, mj H< ;.

We begin by conditioning on each state’s transition distribution 7z, and observa-
tion distribution 0. Given these fixed parameters, the joint distribution of the hid-
den states z; and observations x; can be represented by a forest of tree—structured,
directed graphical models (see Fig. 8). For such models, the belief propagation
(or sum—product) algorithm can be used to efficiently resample all of the latent
assignments in closed form [18, 31].

Messages are first passed from the leaves to the root of each tree to collect
summary statistics, which can also be used to evaluate the marginal likelihood
p(x¢ | {7k, 6k }1;) in closed form. A top—down recursion is then used to resample
each node z;; given its parent zp,(y;). The computational cost of resampling the
assignments for N observed features is thus O(NK?).

In the second stage of the truncated sampler, we condition on the assignments
z of observations to hidden states. It is then straightforward to resample the obser-
vation distributions 6}, by aggregating statistics of the observations {zy; | zy; = k}
assigned to each state [25, 26]. To resample state—specific transition distributions
wg, we first count the number n?(k, £) of transitions from parent state k to child
state £, in direction d, instantiated by z. The posterior is then Dirichlet with com-
bined counts from the hidden state transitions and pseudo transitions from the prior.
In our implementation, parameter sampling is done very efficiently by caching suf-
ficient statistics of the state-specific parameters.

Finally, the global mixture weights 5 can be resampled via an auxiliary variable
method [26]. The truncation level K can be either chosen larger than the num-
ber of expected states to ensure a good approximation to the underlying HDP, or
set smaller to control computational complexity with large datasets. We provide
high—level derivations for the sampling updates underlying the Algorithm 2 in Ap-
pendix C.

4. Categorization of Natural Scenes. This section develops natural scene
models using the HDP-HMT framework, and evaluates their effectiveness in cap-
turing natural scene statistics, and in categorizing images of new environments.

We begin by describing the proposed scene models, and how they are learned
from training images. To provide understanding of the properties and capabilities
of the models, we then visualize the statistics of scenes they have captured, and
look at their categorization performance. Throughout the experiments, we com-
pare the HDP-HMT against a bag-of-features HDP (HDP-BOW), a non-parametric
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Given current state of global mixture weights 3, state-specific model parameters and
transition distributions {0, 7}, and assignments of features to states z;; for the
currently sampled image:

1. Remove the statistics of previous assignments of features to classes:
e update hidden state transition counts:

d(ti i
n\Ef )(ZPa(ti)a z5) < N (2paey, z10) — 1

d(ti d(ti
"\S (241, Z0n(ts)) "\S (215> zongeiy) — 1
e update the posterior hyperparameters to account removal of z;
2. Sample state assignments z;; with belief propagation:

(a) Compute messages upwards from the leaves up to the roots:

i Zt] Zﬂ- tZ) Zt xtlwzn)

Zti

for leaf nodes:
mt

for non-leaf nodes

mtz Zt] Zﬂ—d(tl) (fti|9zM) H mtk Ztl

Zti tkeCh(ti)

(b) Sample hidden states while traversing downwards:
for non-leaf nodes:

P26 | 2Pageiys X, 0) o< 720D (zii)p(ai |-,,) T ™)
tjECh(ti)
for leaf nodes:
p(zti | ZPa(ti)a Xty T, 9) X ﬂ—d(ﬁ)- (Ztl)p(‘rtl | ezti)

ZPa(ti)

3. Add the statistics of new assignments of features x; to classes z;:
e update hidden state transition counts:
n ) (2pagiys 211) nfﬁf“ (zPa(ti), 2ti) + 1
”d(ti)(zm', ZCh(ti)) — ”d(ti)(zti, ZCh(ti)) +1
e update the posterior hyperparameters to account addition of x;;
4. Sample model parameters {0y, 5 5,

(a) Sample direction-specific transition distributions by drawing a random
Dirichlet-vector

7l ~D (nd(kz, 1)+ apfy,...,n%k K)+ aﬁK)
(b) Sample 6;’s by drawing a random vector from
p(Oklx, 2, H) oc p(0x | H) ] p(x;16x)

jizj=k

5. Global mixture weights /3 can be resampled via an auxiliary variable method [26].

Algorithm 2: Blocked Gibbs sampler for learning truncated HDP-HMTs from
training images. We illustrate the blocked resampling of trees of state assignments
7, global mixture weights [, and state-specific model parameters and transition
distributions {6y, Wk}szl. A full iteration of the sampler applies the updates to all
images in random order. For efficiency, we cache the state-specific statistics and
recursively update them when assignment changes.
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Bayesian extension of the model proposed by [7] for scene categorization, which
ignores global structure. This is to demonstrate the importance of capturing spa-
tial feature dependencies in addition to local feature appearance. In the task of
scene categorization (of eight natural scene categories provided by Oliva and Tor-
ralba [16]) we also compare the discriminative power of the multiscale oriented
edge responses of steerable pyramids, and a discrete vocabulary of vector quan-
tized SIFT descriptors.

4.1. Hierarchical Nonparametric Scene Models. The HDP-HMT models for
scenes extend the basic model illustrated in figure 8, so that the states are shared
across a database of natural images of a scene category instead of a single image,
and in the SIFT-domain models latent states generate SIFT-codewords instead of
wavelet coefficient vectors. The observations are separated into 7' sets, equal to
the number of coarsest-scale observations, each generated by a quadtree of hidden
variables. The hidden variables z;; generating the observations x;; are generated
by special root states z;5. We chose the root states heuristically, by assigning them
into 32 different values, in a grid of 8x4 segments (results by completing the forest
into a tree with hidden variables were similar in 8 scenes categorization). As the
coarsest observation scale was of size 16x16, there were 2x4 trees beneath each
root state segment.

The HDP-BOW, used as a baseline model, associates a group to each scale in the
pyramidally organized data, and thus the observed features are drawn from scale-
specific infinite Dirichlet Process mixtures, whose components are shared across
scales via the HDP framework.

We used both wavelet-domain and SIFT-domain features to train the scene mod-
els. The wavelet-domain features were extracted from 128 x 128 grayscale images,
using 4-scale steerable pyramids, with 6 and 8 orientations (sp5 and spf7, respec-
tively), and the associated low-pass and high-pass residual bands were discarded.
The SIFT descriptors were extracted on a dense grid from 256 x 256 grayscale
images, at four resolutions produced by dyadic rescaling of analysis window size.
We then used K—means clustering to create two 1000—element codebooks from
8- 5000, and 15 - 5000 randomly chosen features in training images, from 8 and 15
natural scene categories, respectively.

4.2. Visualization of Learned Scene Statistics. In Fig. 11, we illustrate wavelet
coefficient histograms [30] computed from grayscale images in two categories,
“coast” and “tallbuilding.” We compare this raw data to coefficients simulated from
the HDP-HMT, and the bag—of—words (HDP-BOW) models. The simulation for the
models used the states of their respective Markov chains at iteration number 200 in
the truncated Gibbs samplers using 100 training images.

We can see from the figure, that the HDP-HMT models the non—Gaussian “bow
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HDP-HMT
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FIG 11. Pairwise histograms of steerable pyramid detail coefficients computed from two
128 x 128 images. Columns 1—4 are computed from a “coast” image, while columns 5-8
are computed from a “tallbuilding” image. Rows 2 & 5 are computed from the observed
images, while rows 3 & 6 and 1 & 4 summarize samples from the bag-of-features HDP-
BOW and the HDP-HMT models, respectively. As in [30], we visualize log-contours of
Jjoint distributions (top) as well as normalized conditional distributions (bottom).

tie” shapes of wavelet histograms, and also accurately capture the complex orienta-
tion and scale relationships exhibited by steerable pyramids. However, it underesti-
mates the strong positive correlations between horizontally and vertically adjacent
coefficients at horizontal and vertical finest scale bands, respectively. This is prob-
ably caused by the Markov tree boundaries which separate some pairs of finer scale
coefficients [31].

In contrast, the HDP-BOW captures only the correlations between neighbor-
ing orientations, which are also well modeled with the HDP-HMT. The relations
among the log-contours of raw and simulated data are also captured with both mod-
els, in the sense that the contours for “tallbuilding” images are more elongated than
those for the “coast” images, which contain less high-frequency content. The verti-
cally layered structure of large-scale environmental scenes [28] can be seen in the
clear dominance of the horizontal band over the vertical band in the “coast” image
histograms, and is captured by both models.

The inability of the HDP-BOW to capture scale and location correlations is also
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evident in the much less coherent maximum a posteriori (MAP) assignments of
features to topics for test images in Fig. 12. The MAP assignments for the HDP-
HMT, which were computed efficiently via the max-product algorithm, reveal that
it more effectively models the dependencies between features, and interestingly
even restores structure in the regions of the “tallbuilding” image corrupted by alias-
ing artifacts.

We also looked at samples from the models given the MAP assignments in the
wavelet-domain. The samples we obtained by combining observed scaling coeffi-
cients with sampled detail coefficients and inverting the transform. These images
shown in Figure 13 further verify the better capability of the HDP-HMT to capture
spatial relationships. In our experiments we also found that the posterior distribu-
tions for the emission parameters were much tighter constrained for the tree model.

To further illustrate the nonparametric properties of the truncated model, we
trained models for two categories with varying numbers of training images. During
sampling, we collected 100 samples of the number of states, after allowing the
Markov chain to burn-in for 100 iterations. Figure 14 shows the posterior mean
of the number of hidden states, as a function of the number of wavelet—domain
training images. As expected, the complexity of this nonparametric model grows as
the number of training images increases, adapting automatically to the complexity
of the data. Visual analysis of the Figure 14 indicates that in this experiment, the
truncation limit did not limit the expressiveness of the models.

4.3. Scene Categorization Results. For our scene categorization experiments,
we trained category-specific hierarchical nonparametric Bayesian models using
200 images for training and the rest were used for testing. For the HDP-HMT, we
classified test images as the category which assigned the highest marginal likeli-
hood to test features. These likelihoods can be efficiently computed in closed form
with a single, coarse-to-fine belief propagation (BP) recursion [4, 31], as derived
in B.1.

The categorization performance results obtained with HDP-HMT and HDP-
BOW on the gray-scale eight category dataset [16] are summarized in Table 1,
where average categorization performances are also shown for the “natural” and
“man-made” subsets of the scene categories [16]. For the confusion matrices, see
Fig. 21 in Appendix E. We can see that using the “stronger” local feature repre-
sentation of the SIFT descriptors leads to significant improvements. Furthermore,
results with the HDP-HMT model are better overall, demonstrating the benefits of
coupling local features with global spatial models. In SIFT-domain, the HDP-HMT
performs also better than the current leading approach [2], with average categoriza-
tion accuracy of 86.5% against 84.7%.
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tallbuildin

mountain

Test Image HDP-BOW HDP-HMT SIFT HDP-BOW HDP-HMT
(sp5) (sp5) Codewords (sift) (sift)

FIG 12. Maximum a posteriori classification of the joint configuration of hidden states
for a test image. In the wavelet domain, states are sorted based on the determinant of
the covariance matrix of corresponding emission distribution. In the SIFT domain, states
are sorted based on a trimmed posterior mean of corresponding emission distribution (in
dominant orientation sorted space).
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F1G 13. Sampling scenes given maximum a posteriori assignments of the joint configuration
of hidden states for a test image in a wavelet-domain (sp5). The scaling coefficients of the
novel image were set as those of the test image.

= HDP-BOW (coast)

= = = HDP-BOW (tallbuilding)
150 ====HDP-HMT (coast)

= = = HDP-HMT (tallbuilding)
= Truncation Level

150

. = HDP-BOW (coast)

= = = HDP-BOW (tallbuilding)
1oor ~— HDP-HMT (coast)

= = = HDP-HMT (tallbuilding)
= Truncation Level

100

Posterior Mean Number of States
Posterior Mean Number of States

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Number of Training Images Number of Training Images
sp5 SIFT

F1G 14. Number of states used by the HDP-BOW and HDP-HMT models as a function of
the number of training images, for the “coast” and “tallbuilding” scene categories, in
wavelet (sp5) and SIFT domains. The truncation limit was set to 200 for the models.
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Wavelet (sfp7) SIFT
Man-made [16] 82.9 85.4 86.4 89.7
Natural [16] 78.6 83.5 85.7 87.7
Eight [16] 75.3 80.7 82.4 86.5
Thirteen [7] 75.9 81.8
Fifteen [13] 69.7 77.1
HDP-BOW | HDP-HMT || HDP-BOW | HDP-HMT
TABLE 1

Average scene categorization results, determined as the mean of the diagonal entries of the
corresponding confusion matrix.

We did a similar comparison with the gray-scale thirteen [7] and gray-scale fif-
teen [13] scene category datasets, but only in SIFT-domain, as clearly better per-
formance was obtained in that domain already with the eight categories. Results
from the comparison are summarized in Table 1. For the confusion matrices, see
Figure 22 in Appendix E. As in the previous categorization experiment, the HDP-
HMT obtains better overall performance, although significantly outperforms the
HDP-BOW on the fifteen category dataset. On the thirteen category dataset, the
HDP-HMT outperforms also the dataset authors with average categorization per-
formance of 81.8% against 65.2%, which is also outperformed by the HDP-BOW
(75.9%). However, on the fifteen category dataset, our average categorization rate
of 77.1% is slightly less than that of the leading approach by the dataset authors
81.4%. However, our classifier does not need to keep around any training data in
classification (as opposed to the methods of [1, 13, 16]), and the tree structure al-
lows us to use fast belief propagation methods to efficiently compute likelihoods.



26 KIVINEN, SUDDERTH, AND JORDAN

5. Image Denoising with HDP-HMTs. In this section, we use the HDP-HMT
to restore images corrupted by additive white Gaussian noise, a standard task for
evaluating image model effectiveness. We propose two denoising methods using
the HDP-HMT framework, both applying conventional wavelet-based denoising
methodology by denoising detail coefficients of the wavelet-transformed noisy im-
age. In an empirical Bayesian approach, model parameters are estimated from the
noisy image itself. In a transfer denoising approach, parameter estimation reuses
statistics from a model trained on a database of clean images. We show in our ex-
periments that the transfer denoising approach leads at high noise levels to more
robust predictions than the empirical Bayesian approach, comparable to state-of-
the-art methods.

5.1. Empirical Bayesian Denoising. Our overall learning algorithm for Em-
pirical Bayesian denoising, summarized in Algorithm 4, first estimates parameters
of the HDP-HMT shown in Figure 9 from the observed noisy image. We begin this
learning by running a blocked Gibbs sampler summarized in Algorithm 5 on the
noisy wavelet tree. The sampler extends Algorithm 2 to also resample noisy coeffi-
cients. Derivations for the updates are provided in Appendix C.3. After “burn—in”,
we collect samples 0(*) = {ﬂ'](:) ) A,(:)}szsl from the parameters’ posterior distribu-
tion. Note that each sample s instantiates a different number of states K.

As shown in Appendix D.1, given #(%), the conditional mean of w;; equals

K
Efzy; | Wae(s)] - Zp(zt,- =k | W,Q(S))E[Z'ti | wt“Al(cS)]
k=1

where the posterior state probabilities p(zy; | w, ) may be efficiently computed
via the belief propagation algorithm [4, 18, 31]. The sample—specific conditional
mean estimate reduces to linear least squares smoothing:

(15) Ea; | wtiaA](j)] = A;(j) (Ai(j) + 30) " wy,

where we have assumed that the emission distributions are zero-mean. See Ap-
pendix D.1 for a general formulation. The denoised image is then determined via an
inverse wavelet transform combining observed scaling coefficients with the poste-
rior mean of each detail coefficient, obtained by averaging over the sample—specific
conditional mean estimates E[wti | w, 9(3)].

5.2. Transfer Denoising. Most existing image denoising algorithms estimate
unknown parameters directly from the noisy image at hand. While effective in
some cases, at high noise levels there can be insufficient information, and flexible
models may lead to significantly distorted reconstructions. To avoid this, we pro-
pose a learning algorithm for denoising, summarized in algorithm 3, which uses
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information from the noisy image as well as prior knowledge of multiscale hidden
state patterns learned from a database of clean images, in parameter estimation.

We begin learning by running a blocked Gibbs sampler summarized in Algo-
rithm 2 on a set of clean images in wavelet-domain. After “burn—in”, we collect S
samples from the parameters’ posterior distribution®.

Then we transfer statistics by running the blocked Gibbs sampler summarized
in Algorithm 5 on the noisy wavelet tree, conditioning on each of the samples
separately. This way estimation uses statistics learned from both clean images,
and the noisy test image at hand. After “burn—in”, we collect a sample (3) =

71125) , A,(f)} s— from each of the chains, compute the conditional mean estimates
E[mti | w, 9(8)], average over them to obtain posterior mean estimates for clean
detail coefficients, and finally apply the inverse wavelet transform combining ob-
served scaling coefficients with the clean detail coefficient estimates.

Given a set of clean images, and a noisy image, corrupted by additive white A/ (0, 3,,)
noise:

1. Learn statistics of clean images by running the blocked Gibbs sampler summarized
in Algorithm 2 on clean images in wavelet representations until burn-in.

2. Collect S samples from the converged chain.

3. Apply clean image statistics transfer by running the blocked Gibbs sampler summa-
rized in Algorithm 5 on the noisy graph conditioning separately on the samples, and

collecting a sample (*) = {w,(f), A,is)}szsl from each of the chains after burn-in.

4. Estimate posterior hidden state probabilities p(z;; | w, 6) via the belief propagation
algorithm.

5. For each sample, estimate denoised coefficients in closed form:

Ks
E[Iti | W, 9(5)} = Zp(zn =k | w, 9(8))}}3[17“ | wti,A,(j)}
k=1

Ks
= 3 pai =k | w09 AP (AL + 5,) My,
k=1
6. Average over samples of varying complexity ]E[xti | w, 9(5)] to get posterior mean
of detail coefficients.

7. Apply inverse wavelet transform to a combination of observed scaling coefficients
wyio With estimated detail coefficients xy;.

Algorithm 3: The overall learning algorithm for transfer denoising with HDP-
HMTs. Steps 1-2 are done offline, those computations being shared for all images
to be denoised.

*these procedures are done offline and are shared for all images to be denoised
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FIG 15. Average peak signal-to-noise ratio (PSNR; left) and mean structural similarity
index (MSSIM; right) values as a function of input PSNR, computed over the Empirical
Bayesian denoising results of an ensemble of standard denoising images (cameraman,
einstein, house, mandrill, peppers) using T"-order steerable pyramids, and undecimated
Haar wavelets.

5.3. Results. Figure 15 shows average denoising performance of the Empir-
ical Bayesian algorithm in terms of peak signal-to-noise ratio (PSNR) and mean
structural similarity index (SSIM). We can see that using 7*"—order steerable pyra-
mid decomposition yields better results at lower noise levels, and worse results at
higher noise levels than when using undecimated Haar wavelets. In figure 16 we
compare the HDP-HMT’s denoising performance (using 7*"-order steerable pyra-
mids) to two other methods. Using an empirical Bayesian denoising algorithm,
our results at low and moderate noise levels are comparable to BLS-GSM, one
of the most effective wavelet-based denoising methods’. However, at higher noise
levels, increasing high-frequency artifacts start to reduce restoration quality (see
figures 18&16). By learning the statistics of a set of 200 clean natural images
from the Berkeley segmentation dataset, the HDP-HMT learns that images typi-
cally contain many smooth or homogeneously textured regions, separated by sharp
edges. The denoising algorithm transfers this prior knowledge by reusing multi-
scale hidden state patterns, resulting in better reconstruction of distorted textures
at higher noise levels, especially with respect to the perceptual MSSIM criterion,
as also can be seen from the tables 2&3. As we can see from figure 20, statistics
transfer is effective almost immediately, denoising performance converging using
a single sample after a short number of iterations - regardless of the noise level. In
the empirical Bayesian approach, convergence takes increasingly more iterations,
and denoising performance relative to transfer denoising approach using samples
from converged chain decreases, as the noise level increases. In these higher noise
regimes, transfer denoising with the HDP-HMT also surpasses the performance

SPSNR-wise leading wavelet-based denoising method [15] is not used in our comparisons as
sufficient performance information or software is not publicly available
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FIG 16. Average peak signal-to-noise ratio (PSNR; left) and mean structural similarity
index (MSSIM; right) values as a function of input PSNR, computed over the denoising
results of an ensemble of standard denoising images (cameraman, einstein, house, man-
drill, peppers). The wavelet-based methods (HDP-HMT, BLS-GSM) use 7" -order steer-
able pyramids, whereas BM3D analyzes images in blocks.

binary HMT BLS-GSM HDP-HMT (Emp. Bayes)
29.35dB, 0.814 31.84 dB, 0.899 32.00 dB, 0.904

FI1G 17. Comparison of denoising results of the Barbara image with noise level o = 15. Zoomed up
regions are shown to reveal the artifacts.
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Lena (o = 25) Boat (0 = 50) Hill (¢ = 100)

Einstein (o = 75)

Noisy Image

. 20.16 dB, 0.272 14.14 dB, 0.154 10.60 dB, 0.057 8.12 dB, 0.038

(Emp. Bayes)
HDP-HMT

25.64 dB, 0.564 24.56 dB, 0.540

HDP-HMT

(Transfer)

26.80 dB, 0.664

BLS-GSM

BM3D

26.49 dB, 0.659

Original

FI1G 18. Denoising Lena, Boat, Einstein and Hill images contaminated by additive white Gaussian
noise of standard deviation o; with HDP-HMT, BLS-GSM [19], and BM3D [6]. The left-most and
right-most performance numbers beneath the images correspond to PSNR and MSSIM values, re-
spectively.
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of the BLS-GSM. At extreme noise levels, the results are comparable to or better
than those of BM3D, a state-of-the-art algorithm which averages similar blocks of
pixels.

To further investigate the performance of the methods, we considered the task
of natural scene denoising, from coast- and tall building-categories, and from the
BSDB-dataset. The dataset-specific HDP-HMT models were trained on 200 im-
ages. For testing, we chose randomly® 10 images not used in training from each of
the categories.

Figure 19 shows average denoising results relative to the results obtained with
an HDP-HMT model pre-trained on (200) images from the same category as the
test image. The figure contains also HDP-HMT results pre-trained on (200) images
from other datasets than the test image as well as results of the empirical Bayesian
approach and of BLS-GSM, and BM3D. When comparing the different HDP-HMT
results, best results are obtained when the training and test data come from the same
category. Interestingly the model trained on images from the Berkeley segmenta-
tion dataset (BSDB) performs better than scene-specific models tested on images
from other scene categories than they are trained on. The result seems intuitive,
since the BSDB-dataset is not specialized to any particular scene, and contains im-
ages with highly diverse structures, including structures similar to those exhibited
in the scene-specific datasets.

When comparing HDP-HMT to the state-of-the-art methods, we can see that
BLS-GSM obtains worst average results on this test. BM3D obtains best results
on average on tall building-category and BSDB-dataset, while HDP-HMT clearly
outperforms the other methods on the coast-category.

6. Conclusion. We have developed a nonparametric, data—driven model for
image features which captures spatial dependencies via a multiscale graphical model.
Our results show that this HDP-HMT captures natural scene statistics more accu-
rately than bag—of—feature models, and leads to improved categorization perfor-
mance.

We have also shown that the HDP-HMT is able to learn complex statistics
of wavelets, and demonstrated its effectiveness in an image denoising task. By
learning the statistics from natural images, the HDP-HMT is able to transfer prior
knowledge of clean multiscale hidden state patterns, resulting in better reconstruc-
tion of distorted textures at higher noise levels in denoising than an Empirical
Bayesian approach. We expect that transfer of natural image statistics will prove
useful for correcting other forms of image distortion, such as significant motion
blur.

6

images of poor quality or of too similar content with previously chosen ones were not considered
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FIG 19. Average peak signal-to-noise ratio (PSNR; top) and mean structural similarity
index (MSSIM; bottom) values as a function of input PSNR, computed over the denoising
results of an ensemble of images from a scene-specific dataset (from left to right coast, tall
building, BSDB).
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APPENDIX A: COLLAPSED GIBBS SAMPLING

A.1. Sampling assignments of data points to clusters z;;. From Fig. 8, the
posterior distribution of z; given all other state assignments z, ;; factors as

(16) (2t | 2vis, By %) < p(243 | 2, B) P(T4i | Xoti,2)

The second term is the predictive likelihood of x;, which for inverse—Wishart pri-
ors is multivariate Student—¢ [25]. The form of the first term depends on the position
1 of the sampled coefficient, the states of its neighbors, and tying options.

d(ti)
Let Mg

state ¢ with direction d(ti) instantiated by z,+;, and nigi) (k, ) the total number of

(k,¢) denote the number of transitions from parent state k to child

outgoing transitions from state & to direction d(ti). For finest scale coefficients,

Pl | 2on = ko ms) = [rsCalpte |9 dr®
W Ok, z0) + Bz0)

n[\igi)(k, )+

(17) 0

The form of this ratio follows from the properties of Dirichlet distributions.
When evaluating eq. (17), we consider candidate states z; corresponding to
every state which is used at least once elsewhere in the wavelet tree, as well as
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a potential new state. This predictive rule allows HDP-HMTs to determine state
space cardinality in a data—driven fashion.

For non-leaf nodes, p(z | z\+,3) is also influenced by its childrens’ states
2Ch(t) £ {2 | tj € Ch(ti)}, and tying options. In the following the analytical re-
sults derived are for the model assuming separate transition probabilities for each
parent-child-direction, which we found performing best in our experiments.

In candidate states where 2¢; # 2pa (1)

4t 4(t)
(18) p(zti | Z\ti? ﬁ) = /TZPa(ti) (Ztl)p( ZPa(tz) |Z\tl7 7ﬁ) d ZPa(tz)

(t3) (t3) (t3)
I [ Gopes, 2, @) drl,”
tj€Ch(ti)
fﬁf’) (2Pa(ti)» 2ti) + By, nfﬁfi)(zti, 2t5) + afz,;
- d(ti) H 1 d(E)

g (2Pagi); ) +a tj€Ch(t) g (20,0) +a

The case, when a candidate state equals that of the parent is slightly more com-
plicated. Let z; denote the child of node zy;, along the same transition direction
as that from the parent (so that d(tl) = d(ti)). Then for candidate states where
2t = Zpa(ti) = K,

(19)  p(zi | z\ii, B) :/ ZE“()“)(ztz)ﬂgff”(ztz)p( glg ()t)| \tis @, ) dmr glgz(m

IT [ A9 et o) ) | =

tjECh(ti) £t
d(tj)
/ 796 ()78 (o (7D [ 0, B) D | T [ 2

d(tj)
tj€Ch(ti) #tl ”\ti] (2ti,+) +

(Ztu th) + a/thJ

Let us now compute the term involving the integral in the above product.

(20)
D (k) + B\ [l (k, za) + 00k, 2u) + 0B,
p(zti | Z\ti, B) = d(tl) d(tl)
g (k") + .y (k) +1+a

dits )(Ztu Zt]) + aﬂztj

I [~

tj€Ch(ti)#£tl ”\Ei]) (2ti,-) +
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Combining the results for non-leaf nodes,

d(ti)
Ny (ZPa(ti)s 2ti) + Bz,
2D p( | 2, B) = - d(ti) :
n\ti (ZPa(ti)v ) +ta

nfﬁf“ (2tis 211) + Bz, + 0(2paes), 26i)0 (2t 211) nfﬁfj)(zti, 245) + Bz,

(;i) H d(t)

d
n\tl (Zti7 ) + o+ 6(2Pa(ti)7 Zti) tjeCh(ti)\tl n\ti (Ztia ) + «
where tl € Ch(ti), and d(tl) = d(t7).

A.2. Sampling global transition counts 3. Sampling S can be done with
the auxiliary variable technique by [26]. Let m ;, denote the number of tables as-
signed to mixture component % in group/mixture j in the chinese restaurant fran-
chise. Given n?(j, k) transitions from state j to state k in direction d observed from
DP(a, B),

P(Oéﬂk)
(B, +n(j, k))

where s(n,m) are stirling numbers of first kind. If these numbers get large, sam-
pling from the conditional can become computationally very expensive. However,
one can also sample the number of tables by simulating the Chinese Restaurant
Process (CRP) [26], counting the number of tables occupied after seating n(j, k)
customers. We found this approach much more efficient in our experiments with
large datasets.

Then given m, § can be sampled from

(22) p(m;ik =m | B, a, Z) = s(nd(j7 k)vm)(aﬁk)m

(23) {Bla"'aﬁKalBu}’m/yND(mzla"'7m:K7’}/)

where m/;, denotes the total number of tables assigned in the mixtures to mixture
component k.

APPENDIX B: EXACT ESTIMATION USING BELIEF PROPAGATION

In this section, we will derive algorithms for exact estimation based on belief
propagation, used in various learning algorithms developed in the manuscript. We
start by the problem of computing the likelihood of a data case, used in the cate-
gorization of natural scenes. The subsection will be described in larger detail than
the later subsections, as the problem solving mechanisms, and the computations
underlying the problems are shared in great detail.
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B.1. Computing likelihood of a data case.

p(x|m0) = Zp(z,x\w,@) :Zp(z | T)p(x|2,0)

L
@)= > TITI r(i | zpaciy: )p(ai | 6-,) ZHH w0 (i) p(wi 62,),

z (=1i€V, z (=1i€Vy

where ¢ indexes the depth within the tree of L scales, and nodes at depth ¢ have an
index set V. The belief propagation algorithm solves the summation/elimination
problem efficiently using a scale-recursive procedure. Starting by pushing the sums
over the bottom scale hidden state-assignment variables as far as possible, we can
write that

(25) p(x|,0) = ZH wd0) (z) (i ]6-,)

2V p, (=1 1€V,

(26) - T 49 (z) p(a62,)

Zy, JEVL

27) = > H il (z:) plwi |62,)

ZV\L (=1 1€V,

(28) : H Z ZPa( ) Z] :Ej |02J)

JEVL %)

Proceeding on the elimination, we now push the sums over the hidden state-assignment
nodes of the second-deepest level of the tree as far as possible, and have that

ZV\L71,L (=1 i€V

H Zﬁgy(i)(j) (25) p(z; | 02) H Z%Pa(k) 2) p(wg | 02,).

JEVL_1 % keVy zk

This elimination structure persists over the different scales, and we can solve the
elimination efficiently by a message passing recursion:

Pa(i . :
G0 WD () = S0 () plas16,) [T wia)

zj keCh(j)
initialized by the computation of (un-normalized) messages from the bottom scale

nodes to their parents wga(k) (2Pak)) = . wzlﬁ’jgk) (z1) p(xg | 0,), where k €
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V1, and terminated at the first scale nodes j € V; (in which case £ € V»). Note
that for each node index j we have that

(31 wfa(j)(ZPa(j)) = p(TR, | 2Pa(j), > 0),

where zg; denotes the observations of the subtree rooted from node j. Likelihood
of the data can be then written as follows:

p(x|m0) = HZ Zpa(J) (2) plz;]6z;) H Wi(zj)

JEVY % keCh(y)

(32) =TI« (zpais) -

JjeEVL

where zp, ;) is a fixed distinguished state for the first scale nodes.

To avoid numerical issues, we use an alternative recursive scheme for exact like-
lihood computation based on normalized messages. The messages for bottom scale
nodes (k € Vr) are the following:

. 1
(33) my® (zpagy) = — D7) (2 plak | 0-,),

Ck .

where the normalization constant

d(k) Pa(]
€k = Z Z Zlga(k) p(zk|02,) = Z w; ZPa )

ZPa(k) *k ZPa(5)

For intermediate nodes (j € W\1,1.)

Palj) _ 1 d(j
m; Y (2pag)) = C—jzﬂzﬁi)(])( p(z;10-) |1 )mk %)
keCh(
(34) 6 = .2, e o) T mk %)
Zpa(j) Zj keCh(j

For first scale nodes (5 € V1)

mfa(j)(ZPa(j)) = Z”ggzj)( p(z;]0s;) H mi, (%)

Zj keCh(j)
(35) = .
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After the upwards-recursive sweep, exact likelihood can be then computed as:

p(X ’ , 0) - H Z g}&i(]) .Z'] ’92’]) H wi('z])

JEVL %j keCh(y)
_ a(j
wo = (o) TS, et T o
heW\1 JEVL 25 keCh(j
(37) = | Il o) Ile=1le
hEV\l JEVL eV

where the pre-multiplying normalization constants in the latter two equalities are
inverting the effect in terms of the final result of using normalized messages as
opposed to un-normalized ones in the message-passing recursion, to get the exact
result.

B.2. Computing hidden state marginal probabilities. For first scale nodes
(i eV

p(zi | ZPa(i)7X77Ta€) = Z p(ZhZCh(i) | aZPa(i),XﬂTa@)

ZCh(i)

= p(zil ey xm0) Y [ 2zl 2,%x7,6)

Zch(i) j€Ch(7)

B ($Z|021)7T2Pa() zi) H Z ZJ,XR | 2i,7,0)

(X ‘ ZPa(z XR]' ’ 2y T 9)

(38) x p($i|92i)7rzpa)(i) 2i) H mj (z),
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where zp,(;) is a fixed distinguished parent state. For nodes beneath the first scale
(€N

p(zi | X, T, 0) = Z p(zPa(i)7 Zi3 ZCh(i) | X, T, 0)

ZPa(i)»ZCh(d)

= ) plapag) | %7, 0)p(2i | 2pay x,m,0) > [ Pzl 2,%x7,0)

ZPa(i) Zch (i) j€Ch(4)

= Z p(zpa(i) |X,7T7 G)p(zi | ZPa(i)) X, T, 9) H Zp(zj | Ziy X\T, 0)

Zpa(i) JECh(i) %j
(X | Ziy ZPa(i)) s e)ﬂgéi)(i) (ZZ)
= Zp(ZPaz |X7TG)
concs p(X | ZPa(i)s T 9)
a(z)
H Zp(zj | zi,x, 7, 0)
JECh(i) %
; Pl | 2, 0w (2)
3 plepagy %m0 s o) [T mit)
Zpa(i) m; “Pa(i) jF€ECh(3)
B d(i p(ZPa(i) ‘ X, T, 0)
(39 = p(xi|0:) H m Z ﬂ-ZF(’a)(i) (2) Pa(i) )
JECh(5) 2Pa(i) m; (ZPa(i))

Therefore after we have computed the upwards message-passing sweep yielding
the BP-messages for a node from its children as described in the previous sub-
section, we can recursively sweep downwards computing the conditional marginal
probabilities of the hidden state-assignment variables. This second step is started
at the first scale hidden state-assignment nodes, with the computation of (38) for
each node, followed by a downwards-recursive sweep with the computation of (39)
at the deeper scale nodes.

B.3. Computing the joint hidden state conditional probability. Using the
product rule, and conditional independence properties of the tree-structured graph,
we can write that

(40) p(Z |X77T7 9) = Hp(zi | ZPa(i)yxaﬂ—,e)'

These conditional distributions can be computed efficiently utilizing the upwards
BP-messages. Indeed, for nodes on scales from 1to L — 1, indexed as ¢ € V\ L, We
have by marginalizing over the child hidden state-assignment variables that

(41) p(zi | ZPa(i)s X T, 0) X p(gji | ezi)ﬁi(,?(i) (zl) H m;(zl) :
J€Ch(37)
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For bottom scale nodes, indexed as 7 € Vj,, we have that

(42) p(zi | ZPa(i)) X, T ,0) o< p(xi|0)m 4@ (2i) -

ZPa( )

APPENDIX C: BLOCKED GIBBS SAMPLING FOR TRUNCATED
REPRESENTATIONS

C.1. Sampling Assignments via Belief Propagation. Messages are first passed
from the leaves to the root of each tree to collect summary statistics, which can also
be used to evaluate the marginal likelihood p(x; | {7, 6}/ ) in closed form.
The bottom—up message passing can be written as

(43) m th Z ¢t2 Ztis th )djtz (th ) H mi’;g(ztl)

24 theN (ti)\tj

where N (ij) denotes the neighbors of node j Yij (zij, ) is the joint belief of
the hidden variable and the observations, and mt (ztj) is the message from hidden
variable t7 to ¢5. For bottom scale nodes the messages can be written as

(44) mtZ (2t5) Z 71% (zti)p(x4i]02,,)
Ztq
For other nodes the messages are of form
(45) mtZ (2t5) Z 7TZtJ (zti)p(x4i]0,,) H mtk 2ti)
24 tkeCh(ti)

A top—down recursion is then used to resample each node z;; given its parent
Zpa(ti)- Using the product rule and conditional independency rules for directed
graphs, we can write the joint conditional probability of hidden states as

T N(t)
(46) p(z|xm0) = HHp Zti | 2Patiy, Xt T, 0).
t=1 i=1
For bottom scale nodes z;;,
(47) p(zti | ZPa(ti)s Xty Ty 0) X W[zi;(,i)ti) (zti)p(mti | 927:1‘)7
and for other nodes,
p(2ti ’ZPa(tz’)7Xt-a7T70) = Z p(Zti,ZCh(n') ’ZPa(ti)athT(a 0)
ZCh(ti)
(48) = p(2ti | 2pati)» Xe., m, 0) H ZP (2t | 215, %¢., 7, 0)
tjeCh(ti) 2tj
(49) x ﬂgg()m (zi)p(ei | 62,,) [ mii(za),

tjeCh(tq)
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where mg(zm) is a belief propagation (BP) message from node ¢j to node ti. The

computational cost of resampling the assignments for N observed features is thus
O(NK?).

C.2. Sampling Model Parameters. In the second stage of the truncated sam-
pler, we condition on the assignments z of observations to hidden states. It is then
straightforward to resample the observation distributions 6 by aggregating statis-
tics of the observations {xy; | z;; = k} assigned to each state [25, 26]. To resam-
ple state—specific transition distributions wg, we first count the number n?(k, £) of
transitions from parent state k to child state ¢, in direction d, instantiated by z. The
posterior is then Dirichlet:

(50) mf~D (nd<kx 1) +apy,...,nk, K) +aﬁK)

Finally, the global mixture weights 3 can be resampled via an auxiliary variable
method [26]. We first sample the number of tables assigned to components in the
mixtures m?k as in the collapsed Gibbs sampler (see appendix A). Then given m,
B can be sampled from

(51 (B B} [myy) ~ D (miy + /K, ymige + 7/ K)

C.3. Noisy Data. In the first main step of the blocked Gibbs sampler for noisy
graphs such as in figure 9 summarized in Algorithm 5, we fix the emission distri-
bution parameters A, transition probabilities 7 and global transitions /3, and sample
hidden state assignments z and clean wavelet coefficients x from their joint distri-
bution

(52) p(x.z|w) = p(z|w) [ ol | 2, we)
ti

To do this, we start by computing the joint assignments of hidden states p(z | w)
with belief propagation. Local evidence for each node p(wy; | z¢;) can be obtained
by marginalizing x;:

(53) p(wlz) = Hp(wti | 215) = H /X p(wii | i) p(es | 263) dys
ti ti X

where p(wy; | xi) = N(wy; 24, Xn) and p(xy; | 2:) = N (2430, A,,). From the
properties of Normal distributions it results that p(wy; | z;) ~ N (0, Az, + Xy,).

Then given sampled hidden state assignments z;;, clean coefficients z;; can be
sampled from

p(lﬂti | Ztiy wti) X p(lﬂti | Zti)p(wti |£L"tz)

54 - N
(>4) = N (s (M) + 221 7 20w, (A5} 4977

2ti
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In the second main step of the algorithm, we fix the hidden state assignments z;;
and clean coefficients x;, and sample the parameters. This step is identical to that
described in the subsection above.

APPENDIX D: LEARNING ALGORITHMS FOR IMAGE DENOISING

D.1. Closed-form image denoising. In the developed denoising algorithms,
the denoised image is determined as an inverse wavelet transform (T~1) of ob-
served wavelet coefficients, with detail coefficients replaced by posterior mean es-
timates of their respective noise-free coefficients, obtained by (Monte Carlo) aver-
aging over sample—specific conditional mean estimates E[w, | W0, 0(5)]. Using S
samples, we have that

(55) y =T (Iwo: Elzi | wyo] ).

where Ez; | w] = % S E[z; | w,0(®)]. The sample-specific conditional means
can be written as follows:

(56) E[xilw,ﬂ(s)] = /xip(ac,-\w,H(s)) dx;
X.

(57) = / X Zp(z,-,xi |'w,0%)) da;
X

(58) = / iy p(zi|w, 09 )p(; | 2, w,0) da
X

(59) [ w3 bl w6l 51,6
X

(60) = > plzi|w,00) / wip(@; | 2i,w;, 0)) da;
2 Xi
K(s)

61) = Zp(z,- = k\W,H(S))E[wi ] w;, 00 2 = k]
k=1

Using the normal equations, we obtain that
-1
Covl]z; |0, z; = k] (Cov[wi 100) 2 = k‘]) <wi — Elw; | 0), 2 = k‘]) .

Since w; = x; + n;, where n; ~ N (0,%,,), we have that E[w,- | 0) 2 = k] =
Elz; | 0,2 = k] = ul(:), and Covw; |0, z; = k] = Cov]z; |0, 2 = k] +



HIERARCHICAL DIRICHLET PROCESS HIDDEN MARKOV TREES 45

¥, = A](:) + 3. Plugging these into (62), we obtain

—1
63)  Efoi | wi, 0,5 = k] = uf” + AP (A +30)  (wi— ).

Combining the results, we can write the state-specific conditional mean estimates

as follows:

(64)
K(s) 1

Elz; | w, 9(5)] = plzi = k|w,09) [MS) + A](:) (A](:) + Zn> (wi — ,u,(;))] ,
k=1

where p(z; = k| w,0()) is computed as in Appendix B.2.

Given a noisy image, corrupted by additive white N (0, 3,,) noise:

1. Apply wavelet transform, obtain scaling coefficients w,y, and detail coefficients
W\tO'

2. Learn model parameter posteriors by running a proposed Gibbs sampler on training
data w49 until burn-in.

3. Collect S samples 6) = {r(*) A} |

4. Estimate posterior hidden state probabilities p(z; | w, ) via the belief propagation
algorithm.

5. For each sample, estimate denoised coefficients in closed form:
K

E[:Cti | w, 9(5)} = Zp(zti =k|w, 9(5))E[:vti | wti,A,(f)}
k=1
K
= Zp(zti =k|w,00) A,(:)( A,(:) +3,) wy.
k=1

6. Average over samples of varying complexity ]E[xti | w, 9(5)] to get posterior mean
of detail coefficients.

7. Apply inverse wavelet transform to a combination of observed scaling coefficients
wyio With estimated detail coefficients xy;.

Algorithm 4: The overall learning algorithm for empirical Bayesian image denois-
ing with HDP-HMTs.
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Given current state of global mixture weights 3, state-specific model parameters and
transition distributions {Ay, 7}, hidden state variables z;; and clean wavelet
coefficients x;:

1. Remove the statistics of previous assignments of features to classes:

e update hidden state transition counts:

\EZ (2Paei) zti) < N (2pauiy, 21i) — 1

\; ) (243, 2Ch(ti)) "\; ) (245, Zen(ti)) — 1
e update the inverse-Wishart posterior hyperparameters {x.,,, V,,, A.,, } to ac-

count removal of xy;

2. Sample state assignments using BP with local evidence p(wy;|zy) =
N(wti; 07 Azti + En)
(a) Compute messages upwards from the leaves up to the roots:

for leaf nodes:
d(t
mi (z45) E fiype (Z) (z43)p(wei| 244

Zti

for non-leaf nodes

tz
mn (25) E e ) (z2:)p(we; | 244) H mit ()
Zti tkeCh(ti)

(b) Sample hidden states while traversing downwards:
for non-leaf nodes:

) . d(ti)
afte) []
P(zti | 2Pa(riy, We., ™, A, X) o< wolt (240 )p(wea| 24i) mis (zei)

tj€Ch(ti)
for leaf nodes:

p(2ti | 2Patiy, We., ™, A, ) o FZLZ)”) (zti)p(wei|2ti)
3. Sample clean wavelet coefficients by drawing a random vector from
(i | 206, wii) o< N (96,51-; (Az_t1 + 251)71 Y wy, (Az_t1 + E;l)il)
4. Add the statistics of new assignments of features x;; to classes zy;:
e update hidden state transition counts:
n? (2paiiy, 21i) nfﬁf” (2Pa(ti), 2ti) + 1
n? (24, 2on@y) 4 (24, 2ongy) + 1

e update the inverse-Wishart posterior hyperparameters {x.,,, Vz,,, A-,, } to ac-
count addition of xzy;

5. Sample model parameters { Ay, 7},

(a) Sample direction-specific transition distributions by drawing a random
Dirichlet-vector from

7l ~D (nd(k, ) +ap,...,n%k K)+ aﬁK)
(b) Sample A’s by drawing a random Inverse-Wishart vector from
p(Aklx,z, H) o p(Ax | H) ] pla;|Ax)

jizij=k

6. Global mixture weights /3 can be resampled via an auxiliary variable method [26].

Algorithm 5: Blocked Gibbs sampler for truncated HDP-HMTs when data is cor-
rupted by additive N (0, %,,) noise.
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APPENDIX E: SUPPLEMENTARY INFORMATION
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F1G 21. Confusion matrices for the 8 scenes category dataset [16] using HDP-BOW (top
row) and the HDP-HMT (bottom row) models in wavelet (left column) and SIFT domain
(right column). Average performance across all categories is shown in parentheses.
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FIG 22. Confusion matrices for the 13 scenes category dataset [7] (left) and 15 scenes cate-
gory dataset [ 13 ](right), using HDP-BOW (top row) and HDP-HMT (bottom row) models
in SIFT domain. Average performance across all categories is shown in parentheses.
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Peak signal-to-noise ratio (PSNR) and mean structural similarity (SSIM) of a set of denoised

o Mandrill Peppers

5 35.44/0.960 35.52/0.962 37.52/0.950 37.53/0.950

10 30.84/0.896 30.90/0.900 33.99/0914 33.92/0912

15 28.56/0.835 28.58/0.837 32.02/0.885 31.91/0.883

25 26.16/0.730 26.10/0.724 29.64/0.842 29.47/0.836

50 23.39/0.540 23.57/0.538 26.14/0.729 26.18/0.745

75 22.14/0.435 22.54/0.449 23.58/0.586 24.37/0.678

100 21.61/0.379 21.95/0.402 22.13/0.511 23.21/0.635

125 21.27/0.348 21.50/0.370 21.08/0.463 22.36/0.610

Emp. Bayes Transfer Emp. Bayes Transfer
o Cameraman Einstein House
5 37.50/0.954 37.56/0.954 38.27/0.943 38.23/0.943 38.82/0.945 38.68/0.946
10 33.29/0914 33.30/0915 34.91/0.892 34.84/0.890 35.47/0.895 35.35/0.897
15 31.05/0.879 30.99/0.879 33.18/0.855 33.06/0.851 33.80/0.867 33.43/0.865
25 28.45/0.823 28.34/0.821 30.94/0.795 30.91/0.795 31.67/0.832 31.21/0.827
50 25.25/0.704 25.30/0.730 27.65/0.663 28.26/0.712 28.40/0.753 28.23/0.761
75 23.07/0.569 23.50/0.669 25.64/0.564 26.80/0.664 25.56/0.611 26.49/0.716
100 21.67/0.486 22.40/0.627 23.65/0.443 25.84/0.635 24.34/0.560 25.32/0.692
125 20.65/0.438 21.57/0.593 24.30/0.514 25.01/0.609 21.87/0.406 24.45/0.668
Emp. Bayes Transfer Emp. Bayes Transfer Emp. Bayes Transfer
TABLE 2
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standard images of size 256 x 256 with the HDP-HMT using the Empirical Bayesian (Emp. Bayes)
and the transfer denoising (Transfer) approach.

Peak signal-to-noise ratio (PSNR) and mean structural similarity (SSIM) of a set of denoised

o Barbara Boat Couple

5 37.88/0.962 37.67/0.960 37.19/0.940 36.80/0.931 37.21/0.949 37.16/0.949
10 34.13/0.932 33.63/0.925 33.62/0.887 33.37/0.878 33.52/0.901 33.41/0.898
15 32.00/0.904 31.29/0.891 31.68/0.847 31.49/0.840 31.54/0.861 31.39/0.856
25 29.38/0.850 28.35/0.825 29.32/0.785 29.21/0.780 29.1470.797 29.05/0.794
50 25.60/0.694 24.69/0.692 26.19/0.658 26.36/0.685 25.81/0.650 26.12/0.686
75 23.50/0.581 23.18/0.614 25.00/0.576 24.77/0.623 24.31/0.574 24.63/0.619
100 22.40/0.524 22.32/0.563 23.68/0.549 23.79/0.586 23.45/0.534 23.69/0.574
125 21.70/0.491 21.77/0.535 22.84/0.513 23.06/0.555 22.74/0.496 22.98/0.539

Emp. Bayes Transfer Emp. Bayes Transfer Emp. Bayes Transfer

o Hill Lena Man

5 37.00/0.942 36.97/0.941 38.65/0.945 38.51/0.943 37.47/0.950 37.43/0.950
10 33.36/0.881 33.31/0.878 35.67/0.913 35.42/0.909 33.60/0.900 33.53/0.898
15 31.53/0.833 31.45/0.828 33.96/0.889 33.75/0.885 31.57/0.857 31.50/0.855
25 29.40/0.760 29.37/0.757 31.71/0.845 31.51/0.848 29.20/0.784 29.17/0.786
50 26.46/0.621 26.94/0.661 27.7170.692 28.56/0.784 26.28/0.656 26.46 /0.684
75 25.39/0.574 25.60/0.602 26.65/0.683 26.80/0.735 24.79/0.585 25.02/0.624
100 24.52/0.533 24.7410.568 25.49/0.650 25.79/0.701 23.81/0.540 24.07/0.584
125 23.87/0.504 24.09/0.541 24.51/0.613 24.82/0.681 23.10/0.508 23.34/0.555

Emp. Bayes Transfer Emp. Bayes Transfer Emp. Bayes Transfer
TABLE 3

standard images of size 512 x 512 with the HDP-HMT using the Empirical Bayesian (Emp. Bayes)
and the transfer denoising (Transfer) approach.
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