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We develop hierarchical, nonparametric Bayesian
models for wavelet representations of natural im-
ages. Individual wavelet coefficients at each scale
are marginally distributed as Dirichlet process (DP)
mixtures of Gaussians. The hidden assignments of
observations to clusters at neighboring nodes are
then linked by a multiscale, tree—structured graphical
model. When learning, the transition distributions as-
sociated with different parent states are coupled via a
hierarchical Dirichlet process (HDP) (Teh et al., 2006).
The multiscale stochastic process defined by this hier-
archical Dirichlet process hidden Markov tree (HDP-
HMT) automatically adapts to the varying complexity
of different datasets, and captures global, highly non-
Gaussian statistical properties of natural images.

The HDP-HMT framework was initially proposed
by Kivinen et al. (2007a), extending prior work on
hidden Markov trees, local Gaussian scale mixtures,
and the hierarchical Dirichlet process hidden Markov
model (HDP-HMM) (Teh et al., 2006). Using a col-
lapsed Gibbs sampler for learning HDP-HMT models
from images, an effective empirical Bayesian image de-
noising algorithm was developed. Subsequently, trun-
cated representations of the HDP were used to develop
more efficient blocked sampling algorithms, allowing
learning from large datasets (Kivinen et al., 2007b).
These truncations also provide a mechanism for bal-
ancing computational efficiency and representational
accuracy, while maintaining a nonparametric model.

In this abstract, we extend the HDP-HMT framework
to allow statistics from a large database of natural
images to be transferred to the restoration of noisy
images of novel scenes. Figure 1 shows a graphical
model for a single image which has been contaminated
by additive, zero-mean Gaussian noise of known vari-
ance. It augments the model presented in Kivinen
et al. (2007a) by a set of hidden, clean wavelet coef-
ficients, enabling direct separation of the statistics of
noise from that of undistorted images. Our denoising
algorithm extends the blocked Gibbs sampler of Kivi-
nen et al. (2007b) to also resample noisy coefficients.
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Figure 1. Two levels of an HDP-HMT in which hidden dis-
crete states z:; generate noise—free features ;. Observa-
tions wy; are corrupted by additive Gaussian noise with
covariance A,. States at neighboring locations and scales
are linked by direction dependent transition distributions
7. A global measure 3 couples these transitions when

learning, encouraging reuse of hidden states.

Most existing image denoising algorithms estimate un-
known parameters directly from the noisy image at
hand. While effective in some cases, at high noise
levels there can be insufficient information, and flex-
ible models may lead to significantly distorted recon-
structions. Using an empirical Bayesian denoising al-
gorithm, our results at low and moderate noise lev-
els are comparable to BLS-GSM, a leading wavelet-
based denoising method. However, at higher noise lev-
els, increasing high-frequency artifacts start to reduce
restoration quality (see figures 2&3).

By learning the statistics of a set of 100 clean nat-
ural images from the Berkeley segmentation dataset,
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Noisy Image ~ HDP-HMT (E.B.) HDP-HMT (T.) BLS-GSM BM3D Original Image

10.60 dB, 0.057 25.07 dB, 0.520 26.80 dB, 0.664 26.38 dB, 0.647 26.49 dB, 0.659

8.12 dB, 0.038 23.05 dB, 0.414 24.74 dB, 0.568 24.54 dB, 0.544 24.39 dB, 0.548

Figure 2. Denoising results for einstein and hill images contaminated by additive white Gaussian noise of standard
deviation o = 75 (top) and o = 100 (bottom) pixels, respectively. We also report PSNR and perceptual mean structural
similarity index values for the proposed HDP-HMT models (empirical Bayesian (E.B.) and using statistics transfer (T.)),
a leading wavelet-based BLS-GSM (Portilla et al., 2003), and block-based method BM3D (Dabov et al., 2007).

the HDP-HMT learns that images typically contain
many smooth or homogeneously textured regions, sep-
arated by sharp edges. The denoising algorithm trans-
fers this prior knowledge by reusing multiscale hidden
state patterns, resulting in better reconstruction of dis-
torted textures at higher noise levels, especially with
respect to the perceptual MSSIM criterion.
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1 In these higher noise regimes, transfer denoising with
the HDP-HMT also surpasses the performance of the
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pixels. We expect that transfer of natural image statis-
tics will prove useful for correcting other forms of im-
age distortion, such as significant motion blur.
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