Transfer Denoising with Hierarchical Dirichlet Process
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Statistical Models for Images

Goals

e Learn good statistical models for natural images
e Capture multiscale dependencies using a tree of latent variables

e Automatically adapt the number of latent states to the statistics of
observed data

e Exploit availability of large image databases to develop efficient transfer
denoising algorithms

Mixture Models for Heavy-Tailed
Wavelet Marginals
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e Extreme coefficient values resultant from edges and texture occur more
frequently than with a Gaussian

e Gaussian scale mixtures provide good matches for the highly kurtotic,
heavy tailed distributions

Ty = Uity 5 Vg > 0, ugg ~ N(0, A)

e Discrete mixtures easier to work with, reasonable denoising results even
with binary mixtures:
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Models for Global Image Statistics

Binary Hidden Markov Trees (Crouse et. al. 1998)
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e Wavelet coefficients marginally distributed as mixtures of two Gaussians

e Markov dependencies between hidden states capture persistence of image
contours across locations and scales

e Models each scale and orientation independently

Dirichlet Process Mixtures
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Stick-breaking prior for mixture weights controls complexity:
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e Basis for nonparametric models whose complexity grows as additional data
is observed

e Attractive asymptotic guarantees
e Leads to simple, effective computational methods

Pairwise Statistics of Wavelets
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Hierarchical Dirichlet Process
Hidden Markov Trees

e Hidden states <¢; generate vectors of clean wavelet coefficients L¢; at multiple
orientations

e Observations can be corrupted by additive zero-mean Gaussian noise of known variance
e Wavelet coefficients are marginally distributed as infinite Dirichlet Process (DP) mixtures

e Hierarchical Dirichlet Process (HDP) prior allows learning a potentially infinite set of
appearance patterns from natural images

The Need for Hierarchical
Dirichlet Processes (enet. al. 2004)

e A Hidden Markov Tree (HMT) is defined by a set of mixture or transition distributions,
one for each value of parent state

e In our nonparametric approach, Dirichlet Process priors regularize an infinite state space
e The hierarchical DP ensures that a common set of child states are reused by multiple

parent states d
3 ~ Stick(7) T, ~ DP(a, B)
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Learning with a Truncated Gibbs Sampler

Weak limit approximations use high probability upper bounds on the
number of states observed in a finite dataset:

e Truncated model converges in distribution to DP(’}/, H) as K — o0

e In atruncated HDP-HMT, each state-specific transition distribution is then sampled
from a finite Dirichlet:
) CVﬁK)

e = (41, ..., T ) ~ Dir(af, ..

Sample hidden state assignments jointly using belief propagation:

ZPa(ti) ZPa(ti)

Sample assignments
from root to leaves

Compute messages
from leaves to root

For noisy images, sample clean wavelet coefficients:

v~ N (A + 5207 S s, (AL 571

Sample parameters:
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Estimating Clean Images

Empirical Bayesian
approach estimates model
parameters from the noisy
image

approach reuses multiscale £ 2%
hidden state patterns of bad
_ clean images for making
‘ robust predictions
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Linear least-squares
smoothing

From belief
propagation

Denoising Standard Test Images

Denoising Einstein and Hill

Noisy HDP-HMT (Emp. Bayes)
10.60 dB, 0.057 25.07 dB, 0.520

N/

HDP-HMT (Transfer)
26.80 dB, 0.664

BLS-GSM BM3D
26.38 dB, 0.647 26.49 dB, 0.659

Noisy HDP-HMT (Emp. Bayes)
23.05 dB, 0.414

HDP-HMT (Transfer)
24.74 dB, 0.568

8.12 dB, 0.038

BLS-GSM BM3D
24.54 dB, 0.544 24.39 dB, 0.548

Original

Average Denoising Performance

Peak signal-to-noise ratio (PSNR) Mean structural similarity index (SSIM)
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Natural Scene Analysis
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Categorizing Natural Scenes
Wavelet (sp5) SIFT
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