Hierarchical Dirichlet Process Hidden Markov Trees for Multiscale Image Analysis

Jyri Kivinen

International Computer Science Institute, Berkeley, USA

Helsinki University of Technology, Espoo, Finland

The University of Edinburgh, UK

Joint work with

Erik Sudderth, Brown University Michael Jordan, UC Berkeley

Low-level Image Analysis

Noise Removal

Deblurring

Inpainting & Restoration

Goals:

- Accurately model the statistics of natural images
- Exploit the availability of large digital *image collections*
 - > Suggests use of data-driven, *nonparametric* models

Natural Scene Categorization

Goals:

- Visually recognize natural scene categories
- Accurately model the statistics of natural scenes
- Learn *global* statistical scene models

Outline

Multiscale Models for Natural Images

- Nonparametric Hidden Markov Trees (HDP-HMTs)
- Learning with Monte Carlo methods
- Truncated representations for efficient learning from large datasets

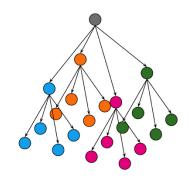
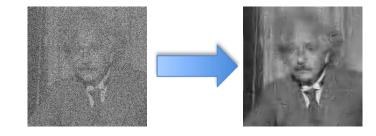


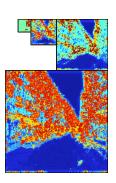
Image Denoising

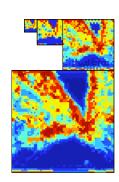
 Transfer natural image statistics for making robust predictions



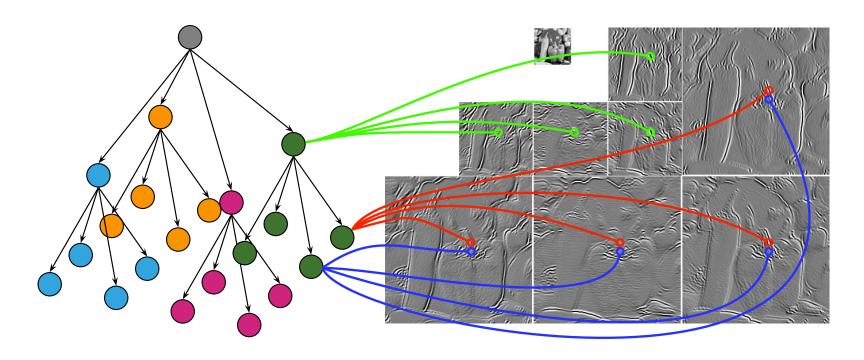
Natural Scene Analysis

- Global, data-driven scene models via HDP-HMT
- Fast categorization via Belief Propagation methods





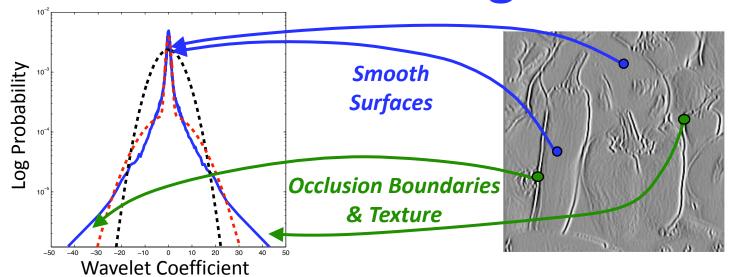
Multiscale Models for Natural Images



Goal: Accurately model the statistics of natural images Approach:

- Capture multiscale dependencies using a tree of latent variables
- Automatically adapt to data complexity via nonparametric,
 Dirichlet process priors

Mixture Models for Heavy-Tailed Wavelet Marginals



- Extreme coefficient values resultant from edges and texture occur more frequently than with a Gaussian
- Gaussian scale mixtures provide good matches for the highly kurtotic, heavy tailed distributions

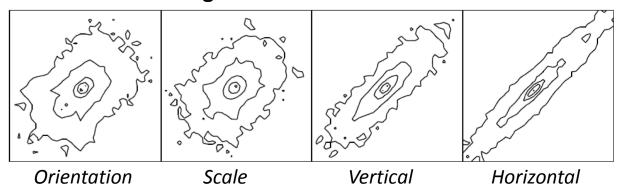
$$x_{ti} = v_{ti}u_{ti} \; ; \; v_{ti} \ge 0 \; , \; u_{ti} \sim \mathcal{N}(0, \Lambda)$$

 Discrete mixtures easier to work with, reasonable denoising results even with binary mixtures:

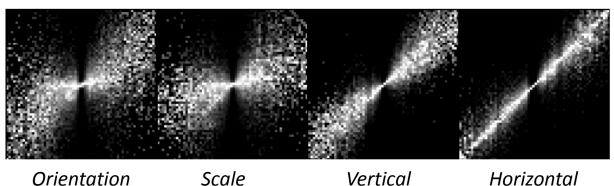
$$x_{ti} \sim \pi \mathcal{N}(0, \Lambda_0) + (1 - \pi) \mathcal{N}(0, \Lambda_1)$$

Joint Statistics of Wavelet coefficients

Pairwise Joint Histograms:

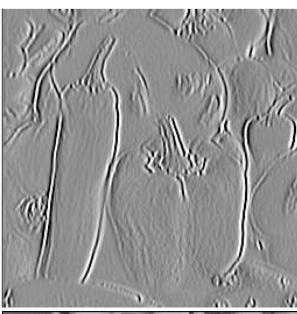


Pairwise Conditional Histograms:



Large magnitude wavelet coefficients...

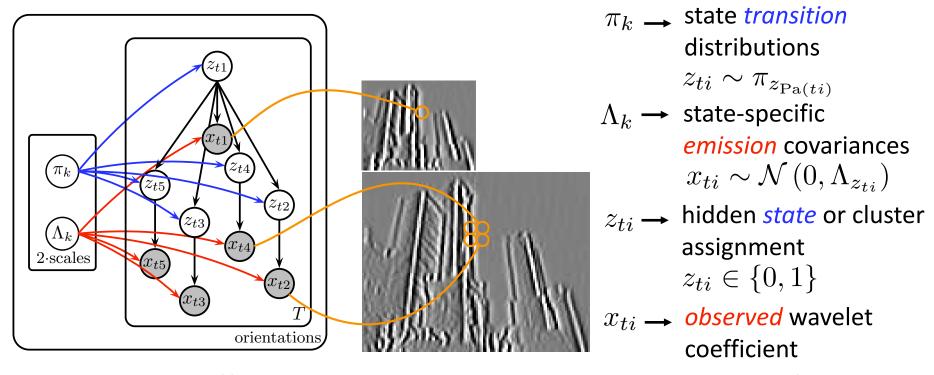
- Persist across multiple scales
- Cluster at adjacent spatial locations





Binary Hidden Markov Trees

Crouse, Nowak, & Baraniuk, 1998



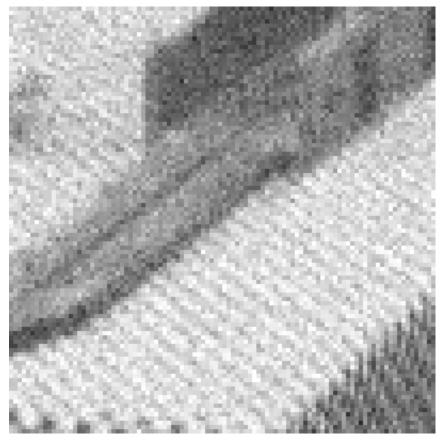
- Wavelet coefficients marginally distributed as mixtures of two Gaussians
- Markov dependencies between hidden states capture persistence of image contours across locations and scales
- Models each scale and orientation independently

Validation: Image Denoising

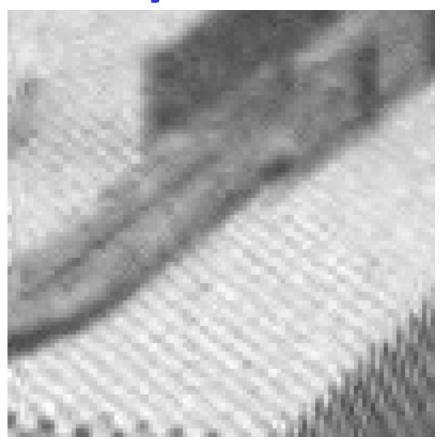
Original

Corrupted by Additive White Gaussian Noise (PSNR = 24.61 dB)

Denoising with Binary HMTs



Noisy Input



Denoised (EM algorithm)

- Is two states per scale sufficient? How many is enough?
- Should states be shared the same way for all images, or for all wavelet decompositions?

Dirichlet Process Mixtures

$$p(x_{ti} \mid \beta, \Lambda_1, \Lambda_2, \ldots) = \sum_{k=1} \beta_k \mathcal{N}(x_{ti}; 0, \Lambda_k)$$

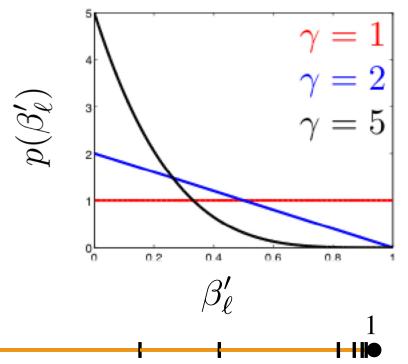
Stick-breaking prior for mixture weights controls complexity:

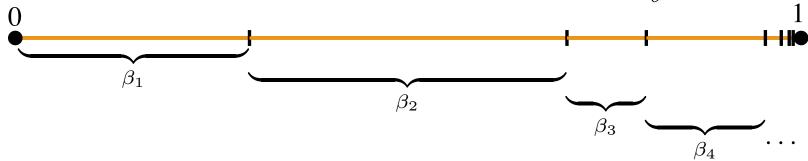
$$\beta_k = \beta_k' \prod_{\ell=1}^{k-1} (1 - \beta_\ell')$$

$$\beta_\ell' \sim \text{Roto}(1, 2)$$

$$\beta'_{\ell} \sim \text{Beta}(1, \gamma)$$

 $\gamma \longrightarrow$ Concentration parameter



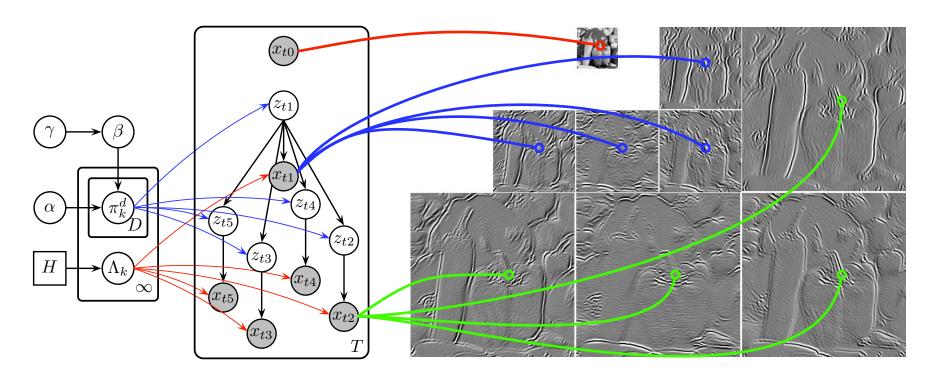


Why the Dirichlet Process?

$$p(x) = \sum_{k=1}^{\infty} \beta_k f(x \mid \Lambda_k) \qquad \beta \sim \text{Stick}(\gamma)$$
$$\Lambda_k \sim H$$

- Basis for *nonparametric* models whose complexity grows as additional data is observed
 - Makes simple predictions given few observations
 - Low-weight clusters capture details of very large datasets
- Attractive asymptotic guarantees
 - Posterior consistency of DP mixture density estimators
 - Convergence to finite mixture parameters of any order
- Leads to simple, effective computational methods
 - > Growing literature on Monte Carlo and variational methods
 - > Integrated, efficient handling of models of varying orders

Hierarchical Dirichlet Process Hidden Markov Trees



 $z_{ti} \longrightarrow \text{indexes } infinite \text{ set}$ of hidden states

$$z_{ti} \in \{1, 2, 3, \ldots\}$$

 $x_{ti} \longrightarrow \text{observed } \frac{\textit{vector}}{\textit{vector}} \text{ of wavelet coefficients}$

 $\pi_k o ext{infinite set of state} \ transition ext{ distributions} \ z_{ti} \sim \pi_{z_{\mathrm{Pa(ti)}}}^{d_{ti}}$

 $\Lambda_k \longrightarrow \text{ state-specific } \underbrace{emission}_{covariances} \ x_{ti} \sim \mathcal{N}\left(0, \Lambda_{z_{ti}}\right) \ \Lambda_k \sim H$

Why a Hierarchical DP? (Teh et. al. 2004)

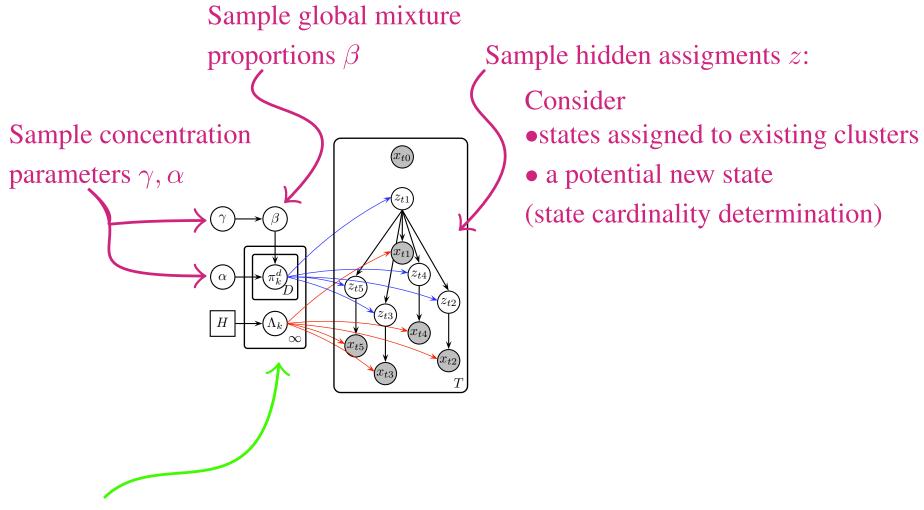
- Hierarchical DP prior allows us to learn a potentially infinite set of appearance patterns from natural images
- Hierarchical coupling ensures, with high probability, that a common set of *child* states are reachable from each *parent*

 $\pi_k^{d_{ti}}(\ell) = \Pr\left[z_{ti} = \ell \mid z_{\operatorname{Pa}(ti)}\right] \qquad \beta \sim \operatorname{Stick}(\gamma)$ Parent state Child state

Average state frequencies robabilities Global classes $\pi_k^d \sim \mathrm{DP}(\alpha, \beta)$ **Transition distributions** $\mathbb{E}\left[\pi_k^d\right] = \beta$ $\alpha \longrightarrow Sparsity \& variability of$

transition distributions

Learning HDP-HMT Models with a Collapsed Gibbs Sampler



Marginalize state-specific parameters $\{\pi, \theta\}$

Rao-Blackwellization improves the efficiency and accuracy of MCMC methods

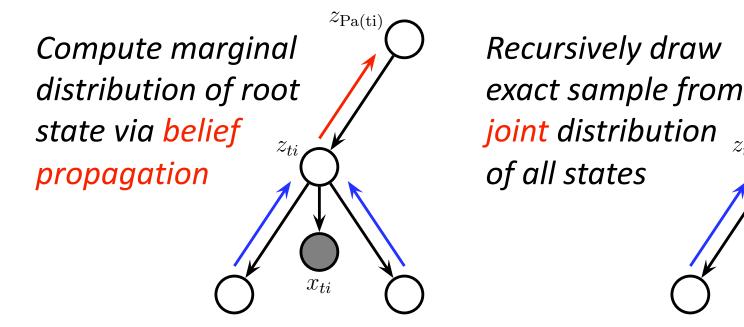
Learning with a Truncated Gibbs Sampler

 Weak limit approximation uses high probability upper bounds on the number of states underlying a finite dataset:

$$\beta = (\beta_1, \dots, \beta_K) \sim \text{Dir}(\gamma/K, \dots, \gamma/K)$$
$$\pi_t = (\pi_{t1}, \dots, \pi_{tK}) \sim \text{Dir}(\alpha\beta_1, \dots, \alpha\beta_K)$$

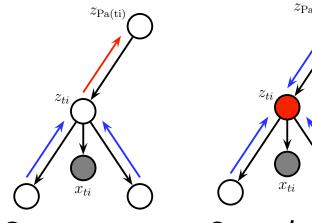
ullet Predictions from truncated model converge in distribution to HDP as $K o \infty$, and allow efficient blocked sampling:

 $z_{\rm Pa(ti)}$

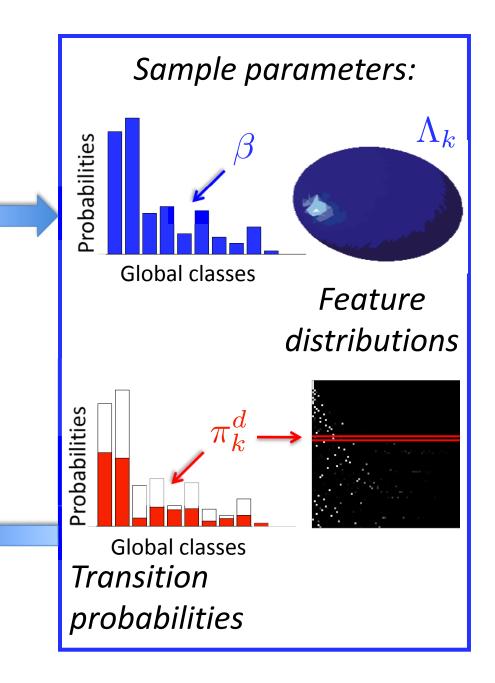


Learning with a Truncated Gibbs Sampler

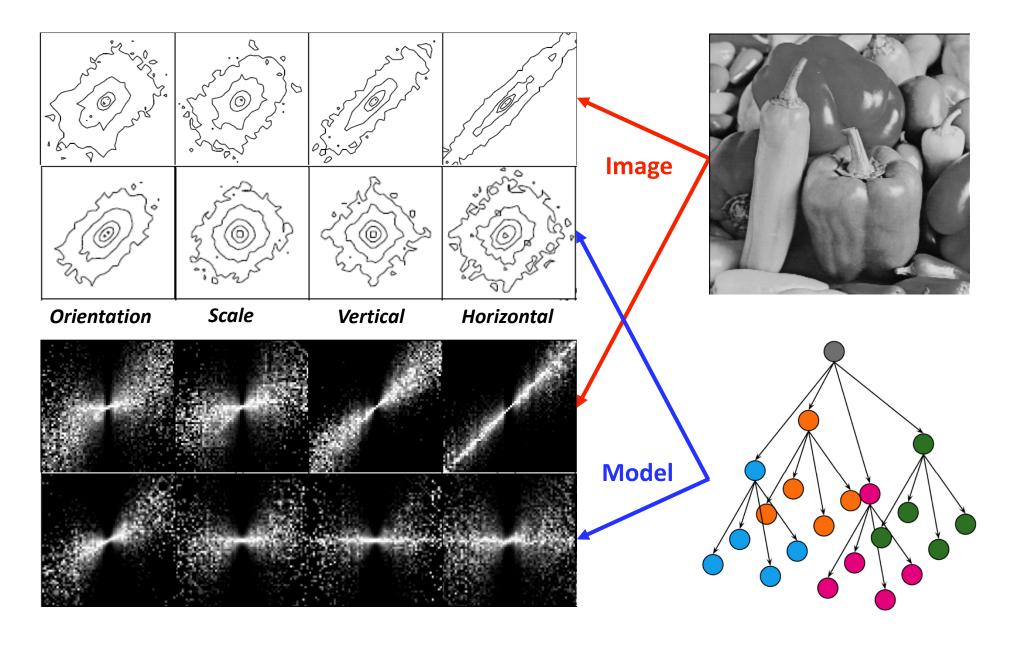
Sample hidden state assignments jointly using belief propagation:



Compute messages from leaves to root Sample assignments from root to leaves



Pairwise Wavelet Histograms



Outline

Multiscale Models for Natural Images

- Nonparametric Hidden Markov Trees (HDP-HMTs)
- Learning with Monte Carlo methods
- Truncated representations for efficient learning from large datasets

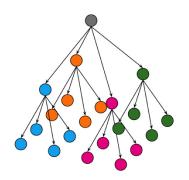
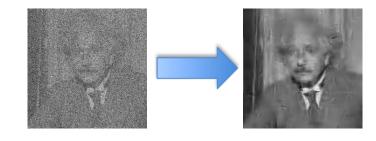


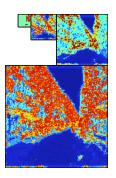
Image Denoising

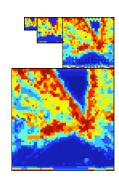
 Transfer natural image statistics for making robust predictions

Natural Scene Analysis

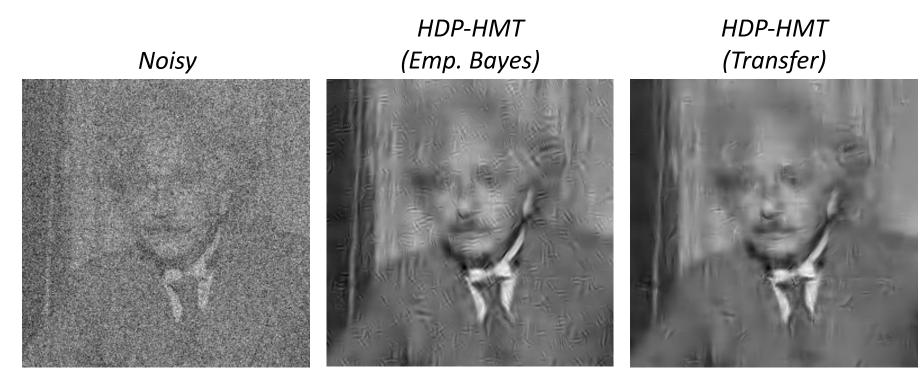
- Global, data-driven scene models via HDP-HMT
- Fast categorization via Belief Propagation methods







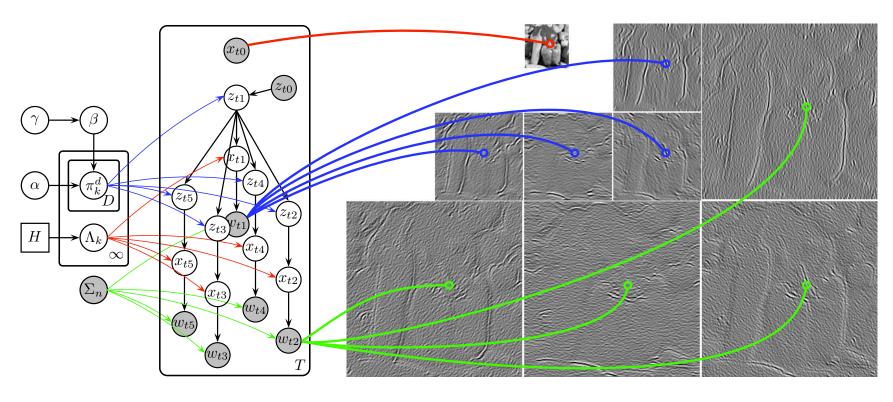
Denoising Images in Wavelet-Domain



Apply learned statistics to denoise images

- Using a global model increases robustness
- Exploit availability of large image databases to develop efficient transfer denoising algorithms
- Improve performance by reusing statistics of clean images

HDP-HMT for noisy data



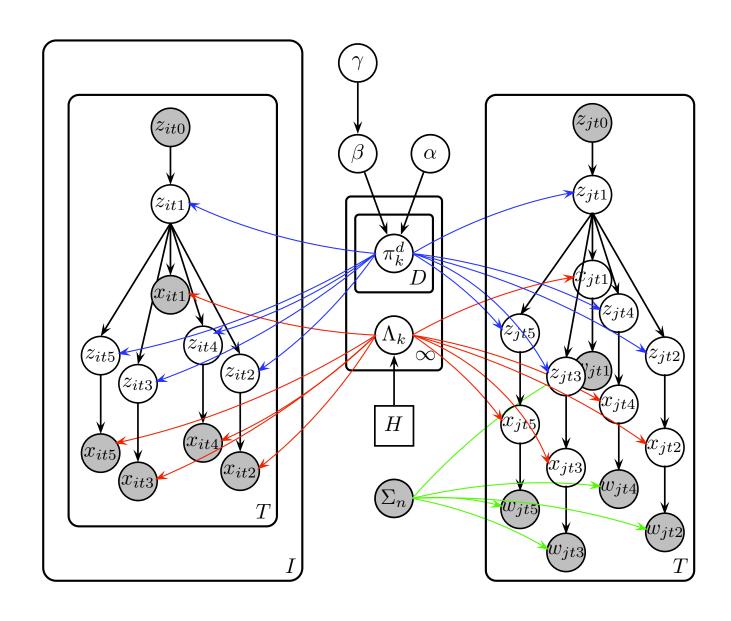
 $x_{ti} \longrightarrow \text{unobserved vector of } clean \text{ wavelet coefficients}$

 $w_{ti} \longrightarrow \text{observed vector of } noisy \text{ wavelet coefficients}$

$$\sum_{n}$$
 — noise variance

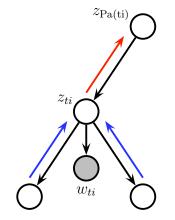
$$w_{ti} \sim \mathcal{N}\left(x_{ti}, \Sigma_n\right)$$

... and for clean data as well

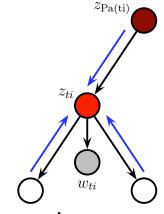


Learning via Gibbs Sampling

Sample hidden states jointly using BP:



Compute msgs from leaves to root



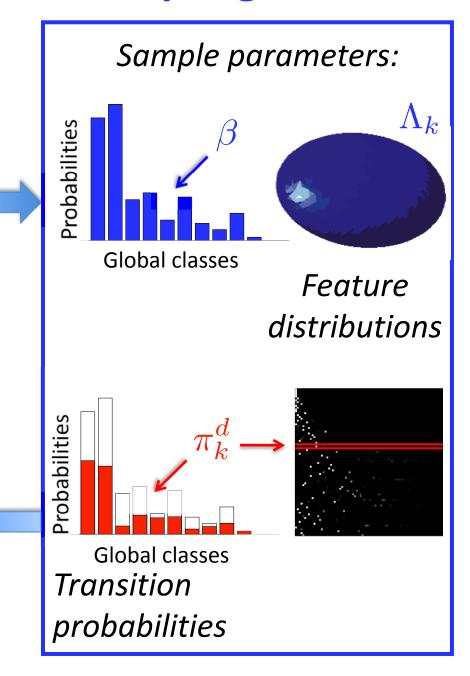
Sample states from root to leaves

For noisy images, sample clean wavelet coefficients:

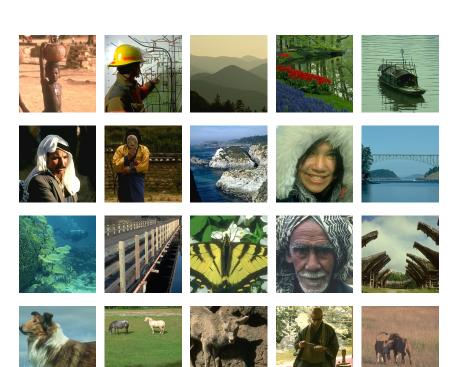
$$x_{ti} \sim \mathcal{N}(\mu, \Sigma)$$

$$\mu = (\Lambda_{z_{ti}}^{-1} + \Sigma_n^{-1})^{-1} \Sigma_n^{-1} w_{ti}$$

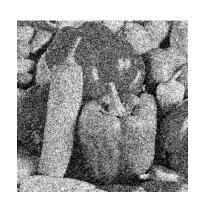
$$\Sigma = (\Lambda_{z_{ti}}^{-1} + \Sigma_n^{-1})^{-1}$$



Estimating Clean Images



Empirical Bayesian approach estimates model parameters from the noisy image

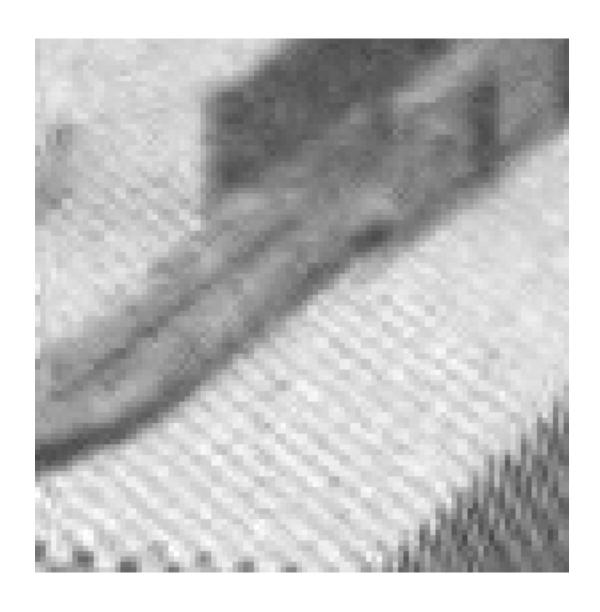


Transfer denoising approach reuses multiscale hidden state patterns of clean images for making robust predictions

$$\mathbb{E}[x_{ti} \mid \mathbf{w}, \theta^{(s)}] = \sum_{k=1}^{K_s} p(z_{ti} = k \mid \mathbf{w}, \theta^{(s)}) \, \mathbb{E}[x_{ti} \mid w_{ti}, \Lambda_k^{(s)}]$$

From belief Linear leastpropagation squares smoothing

Denoising: Binary HMT



Denoising: HDP-HMT (Emp. Bayes)

Denoising: Local GSM

Portilla, Strela, Wainwright, & Simoncelli, 2003

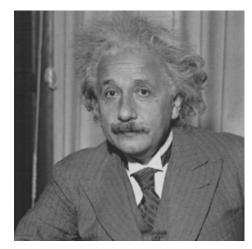
Denoising Einstein

Noisy 10.60 dB, 0.057

HDP-HMT (Transfer) 26.80 dB, 0.664

BLS-GSM

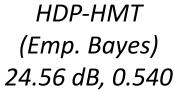
BM3D 26.38 dB, 0.647 26.49 dB, 0.659



Original

Denoising Hill

Noisy 8.12 dB, 0.038



HDP-HMT (Transfer) 24.74 dB, 0.568

Original

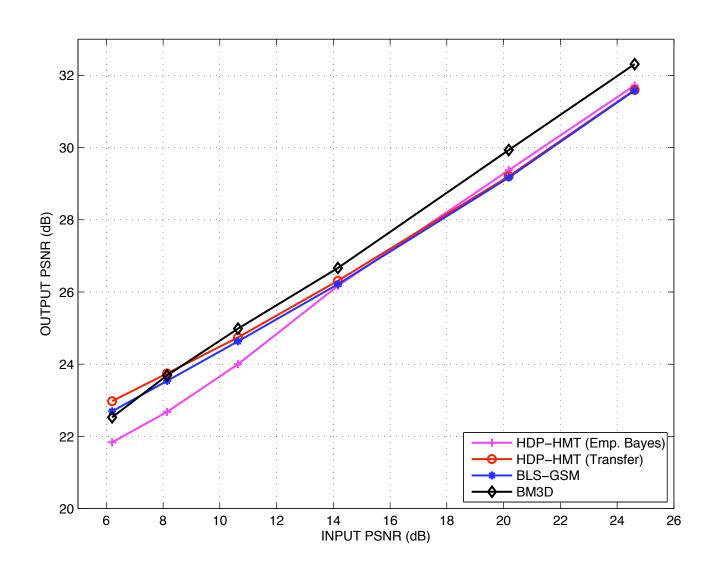
BLS-GSM 24.54 dB, 0.544



BM3D 24.39 dB, 0.548

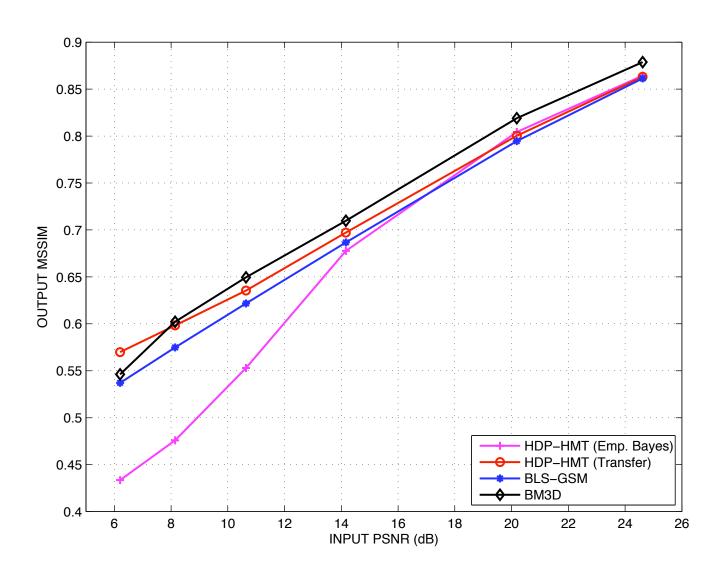
Average Denoising Performance

Peak signal-to-noise ratio (PSNR)



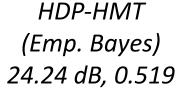
Average Denoising Performance

Mean structural similarity index (SSIM)



Natural Scene Denoising

Noisy 8.14 dB, 0.033



HDP-HMT (Transfer) 26.50 dB, 0.794

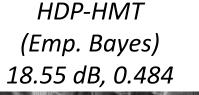
Original

BLS-GSM 25.59 dB, 0.726

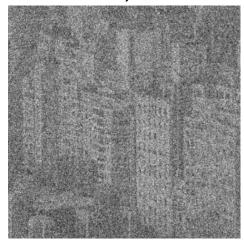
BM3D 25.74 dB, 0.751

Natural Scene Denoising

Noisy 8.14 dB, 0.177



HDP-HMT (Transfer) 18.77 dB, 0.486



Original

BLS-GSM 18.59 dB, 0.454

BM3D 18.65 dB, 0.470

Natural Scene Denoising

HDP-HMT (Transfer) 23.28 dB, 0.653

BLS-GSM 23.14 dB, 0.617

BM3D 23.23 dB, 0.651

Outline

Multiscale Models for Natural Images

- Nonparametric Hidden Markov Trees (HDP-HMTs)
- Learning with Monte Carlo methods
- Truncated representations for efficient learning from large datasets

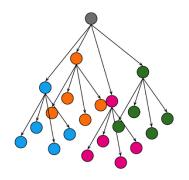
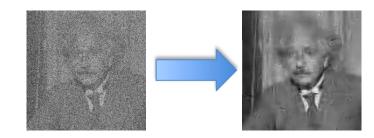


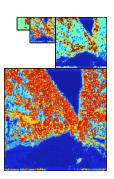
Image Denoising

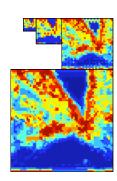
 Transfer natural image statistics for making robust predictions



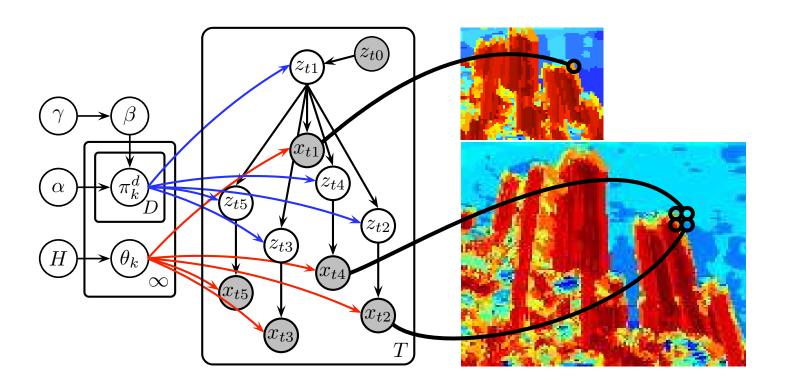
Natural Scene Analysis

- Global, data-driven scene models via HDP-HMT
- Fast categorization via Belief Propagation methods





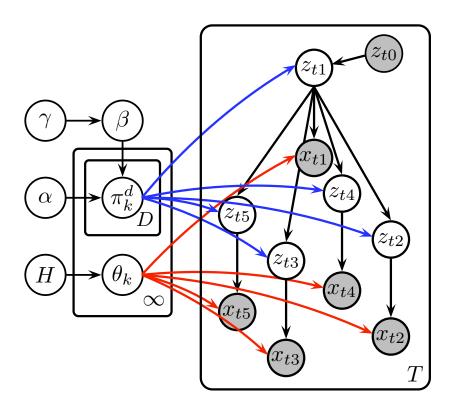
HDP-HMT Scene Model



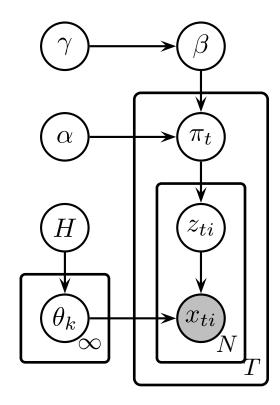
• Hidden states z_{ti} generate vectors of clean wavelet coefficients x_{ti} at multiple orientations or SIFT-descriptors

... versus baseline HDP-BOF

HDP-HMT

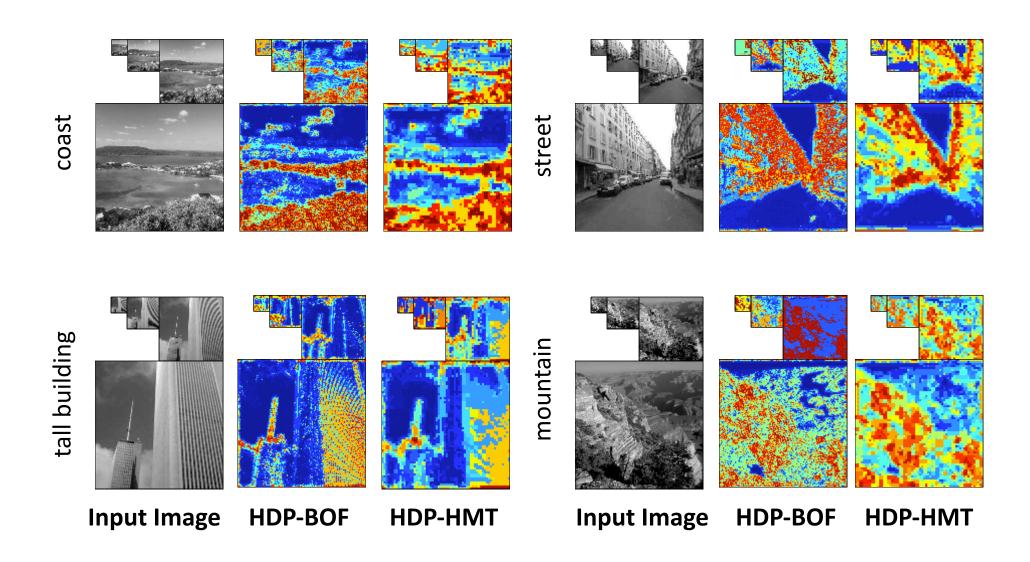


HDP-BOF

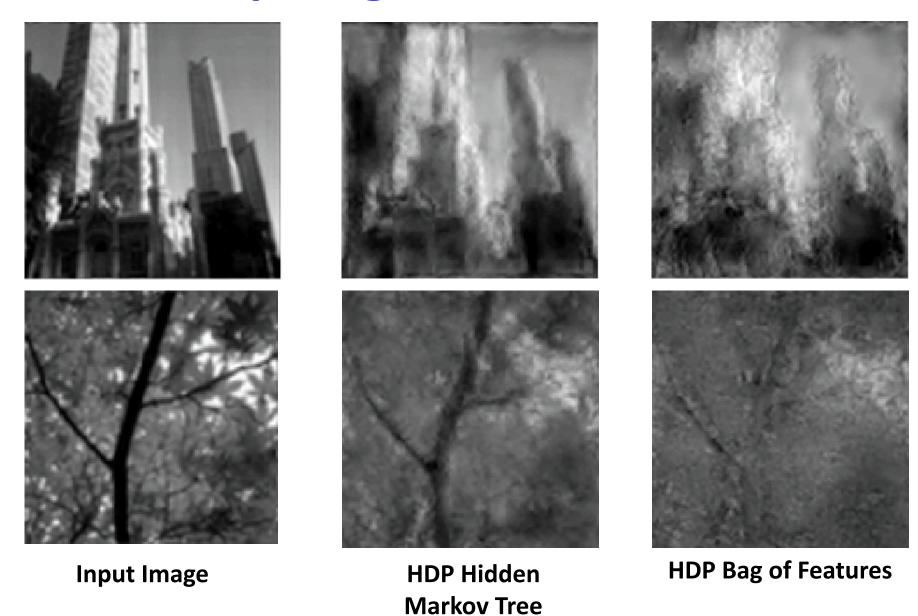


- A nonparametric Bayesian extension of the LDA-based model for scene categorization by Fei-Fei and Perona (2005), which ignores spatial dependencies in the appearance of locally extracted image features
- The HDP-HMT further extends this by incorporating dependencies in feature appearance across location and scale

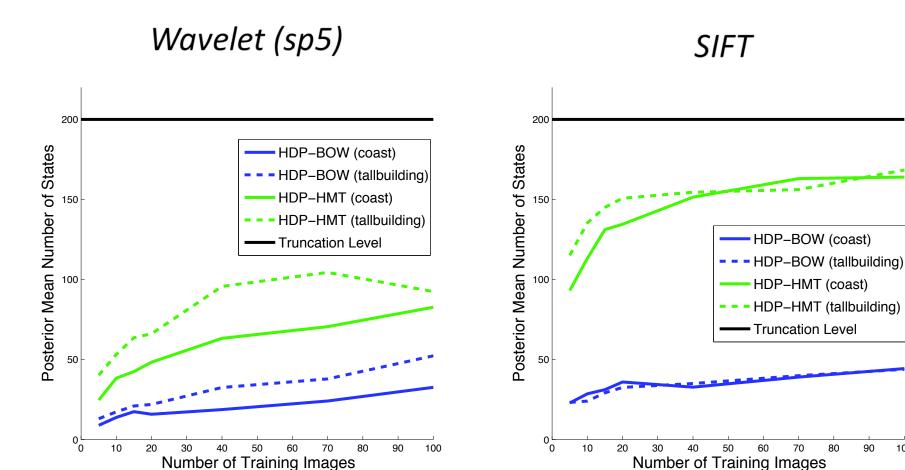
MAP assignments (sp5)



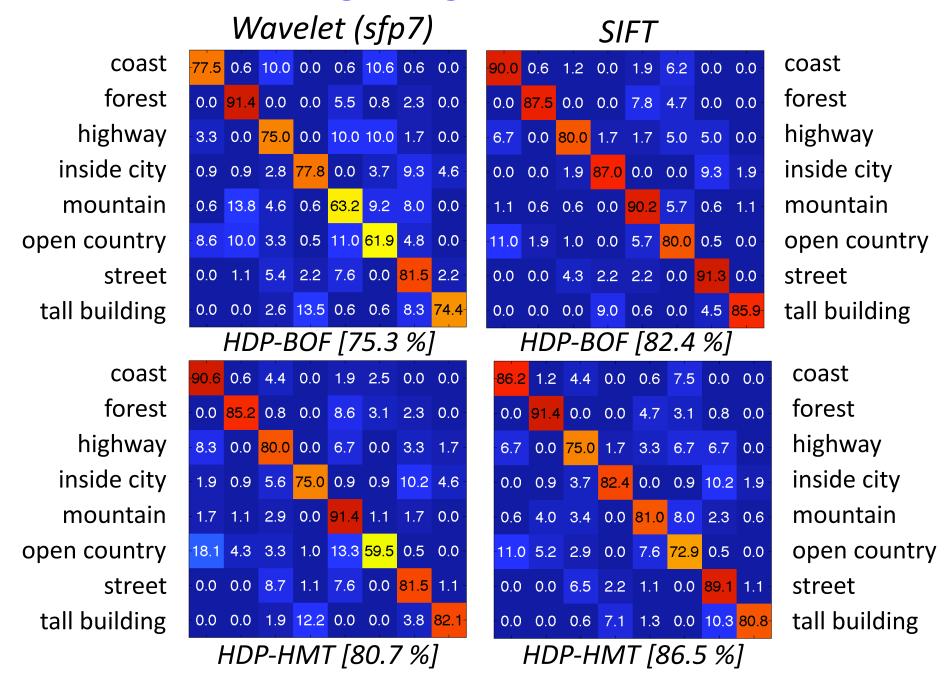
Samples given MAP states



Number of States



Categorizing Natural Scenes



Average Categorization Performance

	Wavelet (sfp7)		SIFT	
Man-made	82.9	85.4	86.4	89.7
Natural	78.6	83.5	85.7	87.7
Eight	75.3	80.7	82.4	86.5
Thirteen			75.9	81.8
Fifteen			69.7	77.1
	HDP-BOW	HDP-HMT	HDP-BOW	HDP-HMT

Summary and Conclusions

- Presented a hierarchical nonparametric Bayesian model for multiscale datasets with complex non-local dependencies
- Presented MCMC methods for learning HDP-HMT parameters from clean and noisy images
- Truncated representations of the DP to allow efficient blocked sampling algorithms and learning from large datasets
- The HDP-HMT captures complex natural image structures and leads to effective learning algorithms for denoising and categorization
- Robust restoration with natural image statistics transfer

Pairwise Statistics of Wavelets

