Hierarchical Dirichlet Process Hidden
Markov Trees for Multiscale Image
Analysis

Jyri Kivinen
International Computer Science Institute, Berkeley, USA
Helsinki University of Technology, Espoo, Finland

The University of Edinburgh, UK

| | Joint work with
] ] Erik Sudderth, Brown University

INTERNATIONAL Michael Jordan, UC Berkeley

I' NS TI1TUTE




Low-level Image Analysis
~

Noise Removal

Goals:

e Accurately model the statistics of natural images

e Exploit the availability of large digital image collections

» Suggests use of data-driven, nonparametric models



Coast Open Country

Goals:
e Visually recognize natural scene categories

e Accurately model the statistics of natural scenes

e Learn global statistical scene models



Outline

Multiscale Models for Natural Images
e Nonparametric Hidden Markov Trees (HDP-HMTs)

e Learning with Monte Carlo methods

e Truncated representations for efficient learning
from large datasets
Image Denoising

e Transfer natural image statistics for
making robust predictions

Natural Scene Analysis

e Global, data-driven scene models via
HDP-HMT

e Fast categorization via Belief
Propagation methods



Multiscale Models for Natural Images

Goal: Accurately model the statistics of natural images

Approach:

e Capture multiscale dependencies using a tree of latent variables

e Automatically adapt to data complexity via nonparametric,
Dirichlet process priors



Mixture Models for Heavy-Tailed
- Wavelet Marginals

Smooth

Log Probability

" Wavelet Coefficient
Extreme coefficient values resultant from edges and texture occur more
frequently than with a Gaussian
Gaussian scale mixtures provide good matches for the highly kurtotic,
heavy tailed distributions

Ty = Ugilhgi 5 Vg > 0, ug; ~ N(0, A)

Discrete mixtures easier to work with, reasonable denoising results even
with binary mixtures:

T ™~ WN(O,A()) -+ (1 — W)N(O, Al)



Joint Statistics of Wavelet coefficients

Pairwise Joint Histograms: Mt J A LNy ))(
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Orientation Scale

Pairwise Conditional Histograms:

Orientation Scale Vertical Horizontal

Large magnitude wavelet coefficients...

e Persist across multiple scales
e (luster at adjacent spatial locations



Binary Hidden Markov Trees

Crouse, Nowak, & Baraniuk, 1998
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T — State transition
distributions
“ti ™ Tzpaces)

A, — state-specific
emission covariances
Ltq N~ N(O, Aztz)

2+; — hidden state or cluster
assignment
2t € {0, 1}

T; — Observed wavelet
coefficient

Wavelet coefficients marginally distributed as mixtures of two
Gaussians

Markov dependencies between hidden states capture
persistence of image contours across locations and scales

Models each scale and orientation independently
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White Gaussian Noise
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~ Denoising with Binary HMTs

Iﬁ-‘i‘_l'i_ " -"'- ‘:.."' : ln.. i.ap;i‘ A& = .lli |
Noisy Input Denoised (EM algorithm)

e |s two states per scale sufficient? How many is enough?

e Should states be shared the same way for all images,
or for all wavelet decompositions?



Dirichlet Process Mixtures
p(xti | By A1, Mg,y ) = Zﬁk/\/ (24i5 0, Ag)
k=1

Stick-breaking prior for mixture weights controls complexity:
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Why the Dirichlet Process ?

p(x) = Biuf(x]| Ak) G~ Stick(7)
k=1 Ak ~ H
e Basis for nonparametric models whose complexity grows
as additional data is observed
» Makes simple predictions given few observations
» Low-weight clusters capture details of very large datasets

e Attractive asymptotic guarantees
» Posterior consistency of DP mixture density estimators
» Convergence to finite mixture parameters of any order

e Leads to simple, effective computational methods
» Growing literature on Monte Carlo and variational methods
» Integrated, efficient handling of models of varying orders



Hierarchical Dirichlet Process Hidden Markov Trees

Z+; —  indexes infinite set T — infinite set of state
of hidden states transition distributions
oo it
Zt’l, E {1, 2, 3, o o .} Zt?f T‘-Zpa(ti)
XLt; —  observed vector of A L. —> state-specific emission covariances
wavelet coefficients
Ltg N N (O, Azm)

A, ~H



Why a Hierarchical DP ? (rnet. al. 2004)
e Hierarchical DP prior allows us to learn a potentially infinite set of
appearance patterns from natural images

e Hierarchical coupling ensures, with high probability, that a
common set of child states are reachable from each parent

T (0) = Pr [zt = £] 2pagy] 8 ~ Stick(y)

Average state frequencies

Probabilities

00
Global classes

d
T ™ DP (Oéa 6 )
Transition distributions
dl __
Sparsity & variability of
transition distributions

Parent state

Child state o o —



Learning HDP-HMT Models with a Collapsed Gibbs Sampler

Sample global mixture

proportions (3 Sample hidden assigments z:
Consider
Sample concentration ’ \ estates assigned to existing clusters

parameters -y, e a potential new state

o0

(state cardinality determination)
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Marginalize state-specific Rao-Blackwellization improves the efficiency
parameters {7, 0} and accuracy of MCMC methods



Learning with a Truncated Gibbs Sampler

e Weak limit approximation uses high probability upper bounds on
the number of states underlying a finite dataset:

B=(b1,...,0r) ~ Dir(v/K,...,7/K)
wr = (m1, ..., ) ~ Dir(afy, ..., afk)

e Predictions from truncated model converge in distribution to HDP
as K — 00, and allow efficient blocked sampling:

ZPa(ti)
Compute marginal
distribution of root /
state via belief
propagation

ZPa(ti)
Recursively draw
exact sample from /
joint distribution
of all states

Zti

0\

Zti

76\




Learning with a Truncated Gibbs Sampler

Sample hidden state
assignments jointly using
belief propagation:

Compute Sample
messages assignments
from leaves  from root to
to root leaves

Sample parameters:
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Feature
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Pairwise Wavelet Histograms
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Outline

Multiscale Models for Natural Images
e Nonparametric Hidden Markov Trees (HDP-HMTs)

e Learning with Monte Carlo methods

e Truncated representations for efficient learning
from large datasets

Image Denoising

e Transfer natural image statistics for
making robust predictions

Natural Scene Analysis

e Global, data-driven scene models via
HDP-HMT

e Fast categorization via Belief
Propagation methods



Denoising Images in Wavelet-Domain

HDP-HMT HDP-HMT

Noisy (Emp. Bayes) (Transfer)

Apply learned statistics to denoise images

Using a global model increases robustness

Exploit availability of large image databases to develop
efficient transfer denoising algorithms

Improve performance by reusing statistics of clean images



HDP-HMT for noisy data
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unobserved vector of clean wavelet
coefficients

observed vector of noisy wavelet
coefficients

>, — Nhoise variance

we; ~ N (T4, 50)



... and for clean data as well
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Learning via Gibbs Sampling

Sample hidden states jointly
using BP:

ZPa(ti)
Compute msgs Sample states

from leaves to  from root to
leaves

root
For noisy images, sample
clean wavelet coefficients:
Ty ~ N (1, )
p= (A2 + 5707 S by

Zti

Sample parameters:
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Estimating Clean Images

Empirical Bayesian
approach estimates
model parameters from
the noisy image

[ I—
3 Transfer denoising
approach reuses multiscale ./
hidden state patterns of

clean images for making
robust predictions

K, ”"
E[Cljm' \ W,Q(S)] = Zp(zti =k ‘ Wae(s)) E[wti | wtiaAl(j)]
k=1

From belief  Linear least-
propagation squares smoothing



Denoising: Binary HMT




Denoising: HDP-HMT (Emp. Bayes)




Denoising: Local GSM

R e

Portilla, Strela, Wainwright, & Simoncelli, 2003



Denoising Einstein

HDP-HMT HDP-HMT
Noisy (Emp. Bayes) (Transfer)
10.604dB, 0.057 25.64 dB, 0.564 26.80 dB, 0.664

BLS-GSM BM3D

Original 26.38 dB, 0.647 26.49 dB, 0.659




Denoising Hill

HDP-HMT HDP-HMT
Noisy (Emp. Bayes) (Transfer)
8.12 dB, 0.038 ) 24.56 dB, 0.540 24.74 dB, 0.568

N BLS-GSM BM3D
Original 24.54dB, 0.544  24.39 dB, 0.548




Average Denoising Performance

Peak signal-to-noise ratio (PSNR)

320
30F
o 28|
)
o
=z
wn
o
5 26|
o
l—
2
o)
241
22 | —+— HDP-HMT (Emp. Bayes)[|
—O6— HDP-HMT (Transfer)
—#— BLS-GSM
—¢— BM3D
20 | | | | | | | | T T
6 8 10 12 14 16 18 20 22 24 26

INPUT PSNR (dB)



Average Denoising Performance

Mean structural similarity index (SSIM)
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Natural Scene Denoising

HDP-HMT HDP-HMT
Noisy (Emp. Bayes) (Transfer)

- 814 dB, 24.24 dB, 0.519 26.50 dB, 0.794

- BLS-GSM BM3D
Original 25.59dB, 0.726 25.74 dB, 0.751



Natural Scene Denoising

HDP-HMT HDP-HMT
Noisy (Emp. Bayes) (Transfer)
8.14dB, 0.177 18.55 dB, 0.484 18.77 dB, 0.486
A 84
o 3
{t | @i
o BLS-GSM BM3D
Original 18.59 dB, 0.454 18.65 dB, 0.470

{




Natural Scene Denoising

HDP-HMT (Transfer) BLS-GSM BM3D
23.28 dB, 0.653 23.14 dB, 0.617 3.23dB, 0.651




Outline

Multiscale Models for Natural Images
e Nonparametric Hidden Markov Trees (HDP-HMTs)

e Learning with Monte Carlo methods

e Truncated representations for efficient learning
from large datasets

Image Denoising

e Transfer natural image statistics for
making robust predictions

Natural Scene Analysis

e Global, data-driven scene models via
HDP-HMT

e Fast categorization via Belief
Propagation methods



HDP-HMT Scene Model

e Hidden states <¢; generate vectors of clean wavelet coefficients L¢; at multiple
orientations or SIFT-descriptors



... versus baseline HDP-BOF

HDP-HMT HDP-BOF

T

e A nonparametric Bayesian extension of the LDA-based model for scene
categorization by Fei-Fei and Perona (2005), which ignores spatial dependencies
in the appearance of locally extracted image features

e The HDP-HMT further extends this by incorporating dependencies in feature
appearance across location and scale
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Samples given MAP states

Input Image HDP Hidden HDP Bag of Features
Markov Tree



Posterior Mean Number of States
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Categorizing Natural Scenes
SIFT
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Average Categorization Performance

Wavelet (sfp7) SIFT
Man-made 82.9 85.4 86.4 89.7
Natural 78.6 83.5 85.7 87.7
Eight 75.3 80.7 82.4 86.5
Thirteen 75.9 81.8
Fifteen 69.7 77.1
HDP-BOW | HDP-HMT || HDP-BOW | HDP-HMT




Summary and Conclusions

e Presented a hierarchical nonparametric Bayesian model for
multiscale datasets with complex non-local dependencies

e Presented MCMC methods for learning HDP-HMT parameters
from clean and noisy images

e Truncated representations of the DP to allow efficient blocked
sampling algorithms and learning from large datasets

e The HDP-HMT captures complex natural image structures and
leads to effective learning algorithms for denoising and
categorization

e Robust restoration with natural image statistics transfer



HDP-HMT

Images
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Pairwise Statistics of Wavelets
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