Selected projects#
Hierarchical Dirichlet Process Hidden Markov Trees#
Joint work with Erik B. Sudderth and Michael I. Jordan.
We developed a nonparametric Bayesian modeling framework in which data is generated via tree-structured probabilistic graphical models with latent variables, whose complexity is determined in a data-driven and -adaptive way. Tree-structured graphical models have natural ties, for example to multiscale data. The hierarchical Dirichlet process hidden Markov tree (HDP-HMT) framework extended prior work on, e.g., hidden Markov trees [CNB98], providing a principled and practical approach to determine the amounts of latent states, automatically via the use of hierarchical Dirichlet process [TJBB06]. We developed methodology for effective learning and inference with the framework, and explored applications to computational vision tasks, producing state-of-the-art results (at the time).
Conference and workshop publications and their related presentation materials#
Transfer Denoising with Hierarchical Dirichlet Process Hidden Markov Trees
Jyri J. Kivinen, Erik B. Sudderth, and Michael I. Jordan
In Nonparametric Bayes Workshop (NPBayes 2008) at ICML/UAI/COLT 2008, July 2008, Helsinki, Finland
Poster, SpotlightLearning Multiscale Representations of Natural Scenes Using Dirichlet Processes
Jyri J. Kivinen, Erik B. Sudderth, and Michael I. Jordan
In Proc., IEEE International Conference on Computer Vision (ICCV), Oct. 2007, Rio de Janeiro, Brazil
PosterImage Denoising with Nonparametric Hidden Markov Trees
Jyri J. Kivinen, Erik B. Sudderth, and Michael I. Jordan
In Proc., IEEE International Conference on Image Processing (ICIP), Sep. 2007, San Antonio, Texas, USA
Slides
Drafts#
Hierarhical Dirichlet Process Hidden Markov Trees for Multiscale Image Analysis
Jyri J. Kivinen, Erik B. Sudderth, and Michael I. Jordan
Selected other resources#
Multiscale Image Modeling and Analysis with Hierarchical Dirichlet Process Hidden Markov Trees
Jyri J. Kivinen
Invited talk at Information and Computer Science Forum, Helsinki University of Technology, 21 Aug. 2009Infinite Hidden Markov Trees
Erik B. Sudderth
Applied Bayesian Nonparametrics, Tutorial Course at CVPR 2012, 17 June 2012
References#
- CNB98
M. S. Crouse, R. D. Nowak, and R. G. Baraniuk. Wavelet–based statistical signal processing using hidden Markov models. IEEE Trans. Sig. Proc., 46(4):886–902, 1998.
- TJBB06
Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. J. Amer. Stat. Assoc., 101(476):1566–1581, 2006.